Lời giải của giáo viên
ToanVN.com
Ta có: \({\left( {x + 1} \right)^{2019}} = \sum\limits_{k = 0}^{2019} {C_{2019}^k.{x^k}} \Rightarrow \sum\limits_{k = 1}^{2019} {C_{2019}^k.{x^k}} = \sum\limits_{k = 0}^{2019} {C_{2019}^k.{x^k}} - C_{2019}^0.{x^0} = \sum\limits_{k = 0}^{2019} {C_{2019}^k.{x^k}} - 1 = {\left( {x + 1} \right)^{2019}} - 1\).
Xét với x = 9 ta có: \(\sum\limits_{k = 1}^{2019} {C_{2019}^k{{.9}^k}} = {\left( {x + 1} \right)^{2019}} - 1 = {10^{2019}} - 1\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=a^x\) có đồ thị như hình bên. Giá trị của a là:
.png)
Cho hàm số \(y=f(x)\) có đồ thị như hình bên. Hàm số đã cho đồng biến trên khoảng
.png)
Cho hàm số \(y=f(x)\) có đạo hàm trên R và có bảng biến thiên như hình bên. Khẳng định nào sau đây là đúng?
Cho tứ diện ABCD có \(AB = AC = AD = a,BAC = {60^0},CAD = {60^0},\) \(DAB = {90^0}\). Khoảng cách giữa hai đường thẳng AC và BD là
Cho lăng trụ đứng ABC.A’B’C’ có AA’ = 3, tam giác A’BC có diện tích bằng 6 và mặt phẳng (A’BC) tạo với mặt đáy góc \(60^0\). Thể tích của khối lăng trụ đã cho là
Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Gọi H, K lần lượt là hình chiếu vuông góc của A lên các đường thẳng SB và SD. Biết \(HAK = {40^0}\). Góc giữa hai mặt phẳng (SBC) và (SCD) bằng
.png)
Cho hình nón có góc ở đỉnh bằng \(80^0\). Góc giữa đường thẳng chứa một đường sinh và mặt phẳng chứa đường tròn đáy bằng
Trong không gian tọa độ Oxyz, cho hình bình hành ABCD có \(A\left( {1;0;1} \right),B\left( { - 1;2;1} \right),C\left( {0; - 1;2} \right)\). Tọa độ của điểm D là
Giới hạn \(\mathop {\lim }\limits_{x \to - 1} \frac{{4x + 5}}{{7x + 8}}\) bằng
Trong không gian tọa độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 9\) và điểm M thay đổi trên mặt cầu. Giá trị lớn nhất của độ dài đoạn thẳng OM là
Cho \(a,b \in R,a < b\) và hàm số \(y=F(x)\) là một nguyên hàm của hàm số \(y=\sin x\). Khẳng định nào sau đây là đúng?
Cho hàm số \(y=f(x)\) có đạo hàm là hàm liên tục trên R thỏa mãn \(\int\limits_0^2 {f'\left( x \right)dx = 45,f\left( 0 \right) = 3} \). Giá trị của biểu thức \(f(2)\) bằng
Trong không gian tọa độ Oxyz, phương trình mặt cầu tâm I(2;- 3; - 4) bán kính 4 là
Nền nhà tầng 1 của một hội trường có độ cao 0,8 mét so với mặt đất. Từ nền nhà tầng 1 lên nền nhà tầng 2 có 1 cầu thang 19 bậc, độ cao của các bậc (so với mặt đất) theo thứ tự lập thành một cấp số cộng \((u_n)\) có 19 số hạng, \({u_1} = 0,95;d = 0,15\) (đơn vị là m). Độ cao của bậc thứ 8 so với mặt đất là
Khẳng định nào trong các khẳng định sau là khẳng định đúng?


