Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x+y-2z-1=0\), \(\left( Q \right):2x+2y-4z+7=0\) và đường thẳng \(d:\frac{x}{2}=\frac{y+1}{-1}=\frac{z-2}{1}\). Đường thẳng \(\Delta \) cách đều hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\), đồng thời vuông góc và cắt đường thẳng d có phương trình là:
A.
\(\left\{ \begin{array}{l}
x = - 15 + 2t\\
y = 11 + 5t\\
z = - 7 + 6t
\end{array} \right.\)
B.
\(\left\{ \begin{array}{l}
x = - 15 + t\\
y = 11 + 5t\\
z = - 7 + 3t
\end{array} \right.\)
C.
\(\left\{ \begin{array}{l}
x = \frac{{15}}{2} + t\\
y = \frac{{11}}{4} + 5t\\
z = - \frac{7}{4} + 3t
\end{array} \right.\)
D.
\(\left\{ \begin{array}{l}
x = - \frac{{29}}{4} + t\\
y = 4 + 5t\\
z = - 1 + 3t
\end{array} \right.\)
Lời giải của giáo viên
ToanVN.com
Viết lại mặt phẳng \(\left( Q \right):x+y-2z+\frac{7}{2}=0\)
Gọi \(\left( R \right)\) là mặt phẳng song song và cách đều hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).
Phương trình của mặt phẳng \(\left( R \right)\) là: \(\left( R \right):x+y-2z+\frac{\frac{7}{2}-1}{2}=0\) ⇔ \(\left( R \right):x+y-2z+\frac{5}{4}=0\)
Ycbt: \(\Delta \in \left( R \right)\) và \(\Delta \cap d\equiv K\) ⇒ \(K\equiv d\cap \left( R \right)\). Khi đó, tọa độ của K là nghiệm của hệ:
\(\left\{ \begin{array}{l} \frac{x}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 2}}{1}\\ x + y - 2z + \frac{5}{4} = 0 \end{array} \right.\) ⇔ \(\left\{ \begin{array}{l} x = - \frac{{15}}{2}\\ y = \frac{{11}}{4}\\ z = - \frac{7}{4} \end{array} \right.\)
Ta lại có: \(\left\{ \begin{array}{l} {{\vec u}_\Delta } \bot {{\vec u}_d}\\ {{\vec u}_\Delta } \bot {{\vec n}_{\left( R \right)}} \end{array} \right.\). Do đó \(\Delta \) có một vectơ chỉ phương là: \({\vec u_\Delta } = \left[ {{{\vec n}_{\left( R \right)}};{{\vec u}_d}} \right] = \left( {1;5;3} \right)\)
Vậy phương trình của đường thẳng \(\Delta \) là: \(\left\{ \begin{array}{l} x = - \frac{{15}}{2} + t\\ y = \frac{{11}}{4} + 5t\\ z = - \frac{7}{4} + 3t \end{array} \right.\)
Cho \(t = \frac{1}{4}\) ⇒ \(M\left( { - \frac{{29}}{4};4; - 1} \right) \in \Delta \) ⇒ \(\Delta :\left\{ \begin{array}{l} x = - \frac{{29}}{4} + t\\ y = 4 + 5t\\ z = - 1 + 3t \end{array} \right.\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
.png)
Số điểm cực trị của hàm số đã cho bằng
Đồ thị của hàm số \(y={{x}^{4}}+4{{x}^{2}}-3\) cắt trục hoành tại bao nhiêu điểm?
Trong các hàm số sau, hàm số nào đồng biến trên \(\mathbb{R}\)?
Cho hàm số \(y = {x^2}{e^{ - x}}\). Khẳng định nào sau đây là đúng ?
Cho hàm số \(f\left( x \right)=\sin 3x\). Trong các khẳng định sau, khẳng định nào đúng?
Cho hàm số \(f(x)={{x}^{3}}-3{{x}^{2}}+1\) và \(g(x)=f\left( \left| f(x) \right|-m \right)\) cùng với x=-1;x=1 là hai điểm cực trị trong nhiều điểm cực trị của hàm số y=g(x). Khi đó số điểm cực trị của hàm y=g(x) là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(SA\bot \left( ABCD \right)\) và SA=a, góc giữa SC và mặt phẳng \(\left( SAB \right)\) bằng \({{30}^{0}}\) (tham khảo hình vẽ). Thể tích của khối chóp S.ABCD bằng:
.png)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA$ vuông góc với đáy và \(SA=a\sqrt{2}\). Tính thể tích khối chóp S.ABCD.
Cho \(\int\limits_{0}^{4}{f\left( x \right)dx=3}\) và \(\int\limits_{0}^{2}{g\left( 2x \right)dx=4}\). Tính \(\int\limits_{0}^{4}{\left[ f\left( x \right)-g\left( x \right) \right]dx}\)
Cho \(\int\limits_{1}^{3}{f\left( x \right)\text{d}x}=-5, \int\limits_{1}^{3}{\left[ f\left( x \right)-2g\left( x \right) \right]\text{d}x}=9\). Tính \(\int\limits_{1}^{3}{g\left( x \right)\text{d}x}\).
Gọi \(l,h,r\) lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ. Công thức đúng là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA\bot \left( ABCD \right)\) và SA=a. Khoảng cách từ điểm A đến mặt phẳng \(\left( SBD \right)\) bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên dưới?
.jpg.png)
Số phức liên hợp của số phức \(z={{(2+i)}^{2}}\) là số phức
Tìm độ dài đường kính của mặt cầu \(\left( S \right)\) có phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2y+4z+2=0\).


