Câu hỏi Đáp án 3 năm trước 70

Trong không gian Oxyz, cho hai điểm \(A\left( {1; - 1;2} \right),B\left( {3; - 4; - 2} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 2 + 4t\\y =  - 6t\\z =  - 1 - 8t\end{array} \right.\). Điểm \(I\left( {a;b;c} \right)\) thuộc d là điểm thỏa mãn \(IA + IB\) đạt giá trị nhỏ nhất. Khi đó \(T = a + b + c\) bằng:

A. \(\dfrac{{23}}{{58}}\).   

B. \( - \dfrac{{43}}{{58}}\).   

C. \(\dfrac{{65}}{{29}}\).     

D. \( - \dfrac{{21}}{{58}}\). 

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

\(d:\left\{ \begin{array}{l}x = 2 + 4t\\y = \,\,\,\,\, - 6t\\z =  - 1 - 8t\end{array} \right.\) có 1 VTCP \(\overrightarrow u \left( {4; - 6; - 8} \right)\)

\(A\left( {1; - 1;2} \right),B\left( {3; - 4; - 2} \right) \Rightarrow \overrightarrow {AB}  = \left( {2; - 3; - 4} \right)\)

Ta có: \(\overrightarrow {AB}  = \left( {2; - 3; - 4} \right)\) cùng phương với \(\overrightarrow u \left( {4; - 6; - 8} \right)\). Mà \(A\left( {1; - 1;2} \right) \notin d \Rightarrow AB//d \Rightarrow A,B,d\) đồng phẳng

* Xét mặt phẳng chứa \(AB\) và \(d\):

Gọi \(A'\) là điểm đối xứng của \(A\) qua \(\Delta \); \(\left( \alpha  \right)\) là mặt phẳng qua \(A\), vuông góc với d

Khi đó, giao điểm \(H\) của \(\Delta \) với \(\left( \alpha  \right)\) là trung điểm của \(AA'\)

\(\left( \alpha  \right)\) có 1 VTPT \(\overrightarrow n \left( {2; - 3; - 4} \right)\), đi qua \(A\left( {1; - 1;2} \right)\), có phương trình:

\(2\left( {x - 1} \right) - 3\left( {y + 1} \right) - 4\left( {z - 2} \right) = 0 \Leftrightarrow 2x - 3y - 4z + 3 = 0\)

\(H \in d:\left\{ \begin{array}{l}x = 2 + 4t\\y = \,\,\,\,\,\, - 6t\\z =  - 1 - 8t\end{array} \right.\,\, \Rightarrow \)Giả sử \(H\left( {2 + 4t; - 6t; - 1 - 8t} \right)\)

\(H \in \left( \alpha  \right)\,\, \Rightarrow 2\left( {2 + 4t} \right) - 3\left( { - 6t} \right) - 4\left( { - 1 - 8t} \right) + 3 = 0 \Leftrightarrow 58t + 11 = 0 \Leftrightarrow t =  - \dfrac{{11}}{{58}}\,\,\)\( \Rightarrow H\left( {\dfrac{{36}}{{29}};\dfrac{{33}}{{29}};\dfrac{{15}}{{29}}} \right)\)

Ta có: \(IA + IB = IA' + IB \ge A'B\,\, \Rightarrow {\left( {IA + IB} \right)_{\min }} = A'B\) khi và chỉ khi \(I\) trùng với \({I_0}\) là giao điểm của \(A'B\) và \(\Delta \)

\(H{I_0}\) là đường trung bình của tam giác \(A'AB \Rightarrow \overrightarrow {H{I_0}}  = \dfrac{1}{2}\overrightarrow {AB}  \Leftrightarrow \left\{ \begin{array}{l}{x_{{I_0}}} - \dfrac{{36}}{{29}} = \dfrac{1}{2}.2\\{y_{{I_0}}} - \dfrac{{33}}{{29}} = \dfrac{1}{2}.\left( { - 3} \right)\\{z_{{I_0}}} - \dfrac{{15}}{{29}} = \dfrac{1}{2}.\left( { - 4} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{{I_0}}} = \dfrac{{65}}{{29}}\\{y_{{I_0}}} = \dfrac{{ - 21}}{{58}}\\{z_{{I_0}}} =  - \dfrac{{43}}{{29}}\end{array} \right.\)

\( \Rightarrow {I_0}\left( {\dfrac{{65}}{{29}}; - \dfrac{{21}}{{58}}; - \dfrac{{43}}{{29}}} \right)\) 

Vậy, để \(IA + IB\) đạt giá trị nhỏ nhất thì \(I\left( {\dfrac{{65}}{{29}}; - \dfrac{{21}}{{58}}; - \dfrac{{43}}{{29}}} \right) \Rightarrow a + b + c = \dfrac{{65}}{{29}} - \dfrac{{21}}{{58}} - \dfrac{{43}}{{29}} =  - \dfrac{{21}}{{58}}\).

Chọn: D

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong các hàm số sau đây, hàm số nào đồng biến trên \(\mathbb{R}\)

Xem lời giải » 3 năm trước 72
Câu 2: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với \(AB = a,\,BC = a\sqrt 3 \), cạnh \(SA = 2a\), \(SA\) vuông góc với mặt phẳng (ABCD). Gọi \(\alpha \) là góc giữa đường thẳng SC và mặt phẳng (ABCD). Giá trị \(\tan \alpha \) bằng: 

Xem lời giải » 3 năm trước 70
Câu 3: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, \(AC = 2\sqrt 3 a,\,\,BD = 2a\), hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) cùng vuông góc với mặt phẳng  (ABCD). Biết khoảng cách từ điểm O đến (SAB) bằng \(\dfrac{{a\sqrt 3 }}{4}\). Thể tích của khối chóp  S.ABCD là:

Xem lời giải » 3 năm trước 69
Câu 4: Trắc nghiệm

Cho một cấp số cộng \(\left( {{u_n}} \right)\) có  \({u_1} = \dfrac{1}{2}\), \({u_2} = \dfrac{7}{2}\). Khi đó công sai d bằng: 

Xem lời giải » 3 năm trước 68
Câu 5: Trắc nghiệm

Diện tích S của hình phẳng (H) giới hạn bởi hai đường cong \(y =  - {x^3} + 12x\) và \(y =  - {x^2}\) là: 

Xem lời giải » 3 năm trước 68
Câu 6: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết \(AB = BC = a\), \(AD = 2a,\,\)\(SA = \dfrac{{3a\sqrt 2 }}{2}\), \(SA \bot \left( {ABCD} \right)\). Gọi M, N theo thứ tự là trung điểm của SB, SA. Khoảng cách từ N đến mặt phẳng (MCD) bằng: 

Xem lời giải » 3 năm trước 68
Câu 7: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{5x + 4}}\) là 

Xem lời giải » 3 năm trước 68
Câu 8: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(f\left( 2 \right) = 16\), \(\int\limits_0^2 {f\left( x \right)dx}  = 4\). Tính tích phân \(I = \int\limits_0^1 {x.f'\left( {2x} \right)dx} \).

Xem lời giải » 3 năm trước 68
Câu 9: Trắc nghiệm

Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {x^2}{e^{{x^3} + 1}}\).   

Xem lời giải » 3 năm trước 67
Câu 10: Trắc nghiệm

Tập nghiệm S của bất phương trình \({\log _{\dfrac{1}{2}}}\left( {{x^2} - 3x + 2} \right) \ge  - 1\) là: 

Xem lời giải » 3 năm trước 67
Câu 11: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y - 2z + 4 = 0\). Một vectơ pháp tuyến của mặt phẳng (P) là: 

Xem lời giải » 3 năm trước 66
Câu 12: Trắc nghiệm

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 66
Câu 13: Trắc nghiệm

Cho hàm số \(y =  - {x^4} + 2{x^2} + 3\) có giá trị cực đại và giá trị cực tiểu lần lượt là \({y_1},{y_2}\). Khi đó: \({y_1} + {y_2}\) bằng 

Xem lời giải » 3 năm trước 66
Câu 14: Trắc nghiệm

Cho số phức z thỏa mãn \(\left( {1 + 2i} \right)z = 6 - 3i\). Phần thực của số phức z là: 

Xem lời giải » 3 năm trước 65
Câu 15: Trắc nghiệm

Cho hàm số \(f\left( x \right) = m{x^3} - 3m{x^2} + \left( {3m - 2} \right)x + 2 - m\) với m là tham số thực. Có bao nhiêu giá trị nguyên của tham số m \( \in \left[ { - 10;10} \right]\) để hàm số \(g\left( x \right) = \left| {f\left( x \right)} \right|\) có 5 điểm cực trị?

Xem lời giải » 3 năm trước 65

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »