Câu hỏi Đáp án 3 năm trước 69

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết \(AB = BC = a\), \(AD = 2a,\,\)\(SA = \dfrac{{3a\sqrt 2 }}{2}\), \(SA \bot \left( {ABCD} \right)\). Gọi M, N theo thứ tự là trung điểm của SB, SA. Khoảng cách từ N đến mặt phẳng (MCD) bằng: 

A. \(\dfrac{a}{3}\). 

B. \(\dfrac{a}{4}\).  

Đáp án chính xác ✅

C. \(\dfrac{{4a}}{3}\).    

D. \(\dfrac{{3a}}{4}\).  

Lời giải của giáo viên

verified ToanVN.com

Gắn hệ trục tọa độ: \(A \equiv O\left( {0;0;0} \right),\,B\left( {1;0;0} \right),\,C\left( {1;1;0} \right),\,D\left( {0;2;0} \right)\), \(S\left( {0;0;\dfrac{{3\sqrt 2 }}{2}} \right) \Rightarrow M\left( {\dfrac{1}{2};0;\dfrac{{3\sqrt 2 }}{4}} \right),\,\,N\left( {0;0;\dfrac{{3\sqrt 2 }}{4}} \right)\)

\( \Rightarrow \overrightarrow {MC}  = \left( {\dfrac{1}{2};1; - \dfrac{{3\sqrt 2 }}{4}} \right)\), lấy \(\overrightarrow a  = 4\overrightarrow {MC}  = \left( {2;4; - 3\sqrt 2 } \right)\)

\(\overrightarrow {CD}  = \left( { - 1;1;0} \right)\), lấy \(\overrightarrow b  = \left( { - 1;1;0} \right)\)

Mặt phẳng (MCD) có 1 VTPT \(\overrightarrow n  = \dfrac{1}{{3\sqrt 2 }}.\left[ {\overrightarrow a ;\overrightarrow b } \right] = \left( {1;1;\sqrt 2 } \right)\), đi qua \(C\left( {1;1;0} \right)\) có phương trình là:

\(1\left( {x - 1} \right) + 1\left( {y - 1} \right) + \sqrt 2 \left( {z - 0} \right) = 0 \Leftrightarrow x + y + \sqrt 2 z - 2 = 0\)

\( \Rightarrow {d_{\left( {N;\left( {MNC} \right)} \right)}} = \dfrac{{\left| {0 + 0 + \sqrt 2 .\dfrac{{3\sqrt 2 }}{4} - 2} \right|}}{{\sqrt {1 + 1 + 2} }} = \dfrac{{\dfrac{1}{2}}}{2} = \dfrac{1}{4}\)

Vây, khoảng cách từ N đến mặt phẳng (MCD) bằng: \(\dfrac{1}{4}a\)

Chọn: B

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong các hàm số sau đây, hàm số nào đồng biến trên \(\mathbb{R}\)

Xem lời giải » 3 năm trước 73
Câu 2: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với \(AB = a,\,BC = a\sqrt 3 \), cạnh \(SA = 2a\), \(SA\) vuông góc với mặt phẳng (ABCD). Gọi \(\alpha \) là góc giữa đường thẳng SC và mặt phẳng (ABCD). Giá trị \(\tan \alpha \) bằng: 

Xem lời giải » 3 năm trước 71
Câu 3: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, \(AC = 2\sqrt 3 a,\,\,BD = 2a\), hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) cùng vuông góc với mặt phẳng  (ABCD). Biết khoảng cách từ điểm O đến (SAB) bằng \(\dfrac{{a\sqrt 3 }}{4}\). Thể tích của khối chóp  S.ABCD là:

Xem lời giải » 3 năm trước 70
Câu 4: Trắc nghiệm

Trong không gian Oxyz, cho hai điểm \(A\left( {1; - 1;2} \right),B\left( {3; - 4; - 2} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 2 + 4t\\y =  - 6t\\z =  - 1 - 8t\end{array} \right.\). Điểm \(I\left( {a;b;c} \right)\) thuộc d là điểm thỏa mãn \(IA + IB\) đạt giá trị nhỏ nhất. Khi đó \(T = a + b + c\) bằng:

Xem lời giải » 3 năm trước 70
Câu 5: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(f\left( 2 \right) = 16\), \(\int\limits_0^2 {f\left( x \right)dx}  = 4\). Tính tích phân \(I = \int\limits_0^1 {x.f'\left( {2x} \right)dx} \).

Xem lời giải » 3 năm trước 69
Câu 6: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = \dfrac{1}{{5x + 4}}\) là 

Xem lời giải » 3 năm trước 69
Câu 7: Trắc nghiệm

Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {x^2}{e^{{x^3} + 1}}\).   

Xem lời giải » 3 năm trước 68
Câu 8: Trắc nghiệm

Diện tích S của hình phẳng (H) giới hạn bởi hai đường cong \(y =  - {x^3} + 12x\) và \(y =  - {x^2}\) là: 

Xem lời giải » 3 năm trước 68
Câu 9: Trắc nghiệm

Tập nghiệm S của bất phương trình \({\log _{\dfrac{1}{2}}}\left( {{x^2} - 3x + 2} \right) \ge  - 1\) là: 

Xem lời giải » 3 năm trước 68
Câu 10: Trắc nghiệm

Cho một cấp số cộng \(\left( {{u_n}} \right)\) có  \({u_1} = \dfrac{1}{2}\), \({u_2} = \dfrac{7}{2}\). Khi đó công sai d bằng: 

Xem lời giải » 3 năm trước 68
Câu 11: Trắc nghiệm

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 67
Câu 12: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y - 2z + 4 = 0\). Một vectơ pháp tuyến của mặt phẳng (P) là: 

Xem lời giải » 3 năm trước 66
Câu 13: Trắc nghiệm

Cho số phức z thỏa mãn \(\left( {1 + 2i} \right)z = 6 - 3i\). Phần thực của số phức z là: 

Xem lời giải » 3 năm trước 66
Câu 14: Trắc nghiệm

Cho hàm số \(y =  - {x^4} + 2{x^2} + 3\) có giá trị cực đại và giá trị cực tiểu lần lượt là \({y_1},{y_2}\). Khi đó: \({y_1} + {y_2}\) bằng 

Xem lời giải » 3 năm trước 66
Câu 15: Trắc nghiệm

Cho hàm số \(f\left( x \right) = m{x^3} - 3m{x^2} + \left( {3m - 2} \right)x + 2 - m\) với m là tham số thực. Có bao nhiêu giá trị nguyên của tham số m \( \in \left[ { - 10;10} \right]\) để hàm số \(g\left( x \right) = \left| {f\left( x \right)} \right|\) có 5 điểm cực trị?

Xem lời giải » 3 năm trước 66

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »