Trong không gian Oxyz, cho đường thẳng \(d:\frac{x}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{{ - 3}}\) và mặt phẳng \(\left( P \right):x - y + 2z - 6 = 0\). Đường thẳng nằm trong mặt phẳng \(\left( P \right)\), cắt và vuông góc với đường thẳng d có phương trình là
A. \(\frac{{x + 2}}{1} = \frac{{y - 2}}{7} = \frac{{z - 5}}{3}.\)
B. \(\frac{{x - 2}}{1} = \frac{{y - 4}}{7} = \frac{{z + 1}}{3}.\)
C. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{7} = \frac{{z - 1}}{3}.\)
D. \(\frac{{x - 2}}{1} = \frac{{y + 2}}{7} = \frac{{z + 5}}{3}.\)
Lời giải của giáo viên
ToanVN.com
Gọi \(H = d \cap \left( P \right)\).
Vì \(H \in d \Rightarrow H\left( {2t;3 + t;2 - 3t} \right).\)
Mà \(H \in \left( P \right)\)\( \Rightarrow 2t - \left( {3 + t} \right) + 2\left( {2 - 3t} \right) - 6 = 0\)
\( \Leftrightarrow - 5t - 5 = 0 \Leftrightarrow t = - 1\)
\( \Rightarrow H\left( { - 2;2;5} \right)\)
Gọi đường thẳng cần tìm là \(d'\). Vì \(d' \subset \left( P \right)\) và \(d'\) cắt \(d\) nên \(H \in d'\) .
Gọi \(\overrightarrow {{u_d}} = \left( {2;1; - 3} \right)\) là 1 VTCP của \(d\), \(\overrightarrow n \left( {1; - 1;2} \right)\) là 1 VTPT của \(\left( P \right)\).
Ta lại có: \(\left\{ \begin{array}{l}d' \subset \left( P \right)\\d \bot d'\end{array} \right.\)\( \Rightarrow \overrightarrow {{u_{d'}}} = \left[ {\overrightarrow {{u_d}} ;\overrightarrow {{n_P}} } \right] = \left( { - 1; - 7; - 3} \right)\) là 1 VTCP của đường thẳng \(d'\).
\( \Rightarrow \left( {1;7;3} \right)\) cũng là 1 VTCP của đường thẳng \(d'\).
Vậy phương trình đường thẳng \(d'\) cần tìm là: \(\frac{{x + 2}}{1} = \frac{{y - 2}}{7} = \frac{{z - 5}}{3}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy và SA=a. Tính thể tích khối chóp S.ABC
Tích phân \(\int\limits_0^1 {\left( {x - 2} \right){e^{2x}}dx} \) bằng
Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(A\left( {2;5} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {1;2} \right)\) biến điểm \(A\) thành điểm \(A'\) có tọa độ là.
Biết rằng \(z = {m^2} - 3m + 3 + \left( {m - 2} \right)i\) \(\left( {m \in \mathbb{R}} \right)\) là một số thực. Giá trị của biểu thức \(1 + z + {z^2} + {z^3} + ... + {z^{2019}}\) bằng
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right) = {e^{x + 1}} - 2\) trên đoạn \(\left[ {0;3} \right]\). Tính \(M - m\).
Đồ thị hàm số \(y = \dfrac{{x - 2}}{{x + 1}}\) có đường tiệm cận ngang là
Cho dãy số \(\left( {{u_n}} \right)\), biết công thức số hạng tổng quát \({u_n} = 2n - 3\). Số hạng thứ 10 của dãy số bằng
Phương trình \({\cos ^2}x + 2\cos x - 3 = 0\) có nghiệm là
Gọi \({z_1};\,\,{z_2}\) lần lượt là nghiệm của phương trình \({z^2} - 2z + 5 = 0\). Giá trị \({\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) bằng
Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(A\left( {3;0} \right)\). Phép quay tâm \(O\) góc quay \(90^\circ \) biến điểm A thành điểm nào sau đây?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + 2z + 1 = 0\) và hai điểm \(A\left( {1;0; - 2} \right),\) \(B\left( { - 1; - 1;3} \right)\). Mặt phẳng \(\left( Q \right)\) đi qua hai điểm A, B và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình là
Tập xác định của hàm số \(y = {\left( {x - 2} \right)^{\sqrt 5 }}\) là:
Phép vị tự tâm O tỉ số \(k\left( {k \ne 0} \right)\) biến mỗi điểm \(M\) thành điểm \(M'\). Mệnh đề nào sau đây đúng?
Cho khối nón có độ dài đường sinh bằng 10 và diện tích xung quanh bằng \(60\pi \). Thể tích của khối nón đã cho bằng
Hàm số nào sau đây luôn đồng biến trên từng khoảng xác định của nó?


