Lời giải của giáo viên
ToanVN.com
TH1: \({{x}^{2}}+2{{y}^{2}}>1.\) Đặt \(z=y\sqrt{2},\) suy ra \({{x}^{2}}+{{z}^{2}}>1\text{ }\left( 1 \right).\) Khi đó:
\({{\log }_{{{x}^{2}}+2{{y}^{2}}}}\left( 2x+y \right)\ge 1\Leftrightarrow 2x+y\ge {{x}^{2}}+2{{y}^{2}}\Leftrightarrow 2x+\frac{z}{\sqrt{2}}\ge {{x}^{2}}+{{z}^{2}}\Leftrightarrow {{\left( x-1 \right)}^{2}}+{{\left( z-\frac{1}{2\sqrt{2}} \right)}^{2}}\ge \frac{9}{8}\text{ }\left( 2 \right).\)
Tập hợp các điểm \(M\left( x;y \right)\) là miền \(\left( H \right)\) bao gồm miền ngoài của hình tròn \(\left( {{C}_{1}} \right):{{x}^{2}}+{{z}^{2}}=1\) và miền trong của hình tròn \(\left( {{C}_{2}} \right):{{\left( x-1 \right)}^{2}}+{{\left( z-\frac{1}{2\sqrt{2}} \right)}^{2}}=\frac{9}{8}.\)
Hệ \(\left\{ \begin{array}{l} T = 2x + \frac{z}{{\sqrt 2 }}\\ {\left( {x - 1} \right)^2} + {\left( {z - \frac{1}{{2\sqrt 2 }}} \right)^2} \ge \frac{9}{8}\\ {x^2} + {z^2} > 1 \end{array} \right.\) có nghiệm khi đường thẳng \(d:2x + \frac{z}{{\sqrt 2 }} - T = 0\) có điểm chung với miền (H)
Để T đạt giá trị lớn nhất thì đường thẳng d phải tiếp xúc với đường tròn (C2) nghĩa là ta có \(d\left( {I,d} \right) = \frac{3}{{2\sqrt 2 }}\) \( \Leftrightarrow \left| {T - \frac{9}{4}} \right| = \frac{9}{4} \Leftrightarrow T = \frac{9}{2}\) với \(I\left( {1;\frac{1}{{2\sqrt 2 }}} \right)\) là tâm của đường tròn \(\left( {{C_2}} \right)\).
TH2. \(0 < {x^2} + 2{y^2} < 1\) ta có
\({\log _{{x^2} + 2{y^2}}}\left( {2x + y} \right) \ge 1 \Leftrightarrow 2x + y \le {x^2} + 2{y^2} \Leftrightarrow T = 2x + y < 1\) (loại).
Vậy \(\max T = \frac{9}{2}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y = f(x) có bảng biến thiên như hình bên. Mệnh đề nào sau đây là đúng?
.png)
Cho số phức z thỏa mãn \(\left| z-3-4i \right|=\sqrt{5}.\) Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P={{\left| z+2 \right|}^{2}}-{{\left| z-i \right|}^{2}}.\) Tính mô-đun của số phức \(\text{w}=M+mi.\)
Hàm số \(y = {x^4} - 2{x^2}\) có đồ thị nào dưới đây?
Tính thể tích của khối trụ có bán kính đáy bằng a và độ dài đường sinh bằng \(a\sqrt 3 .\)
Phương trình \({\log _2}\left( {x - 1} \right) = 1\) có nghiệm là
Cho i là đơn vị ảo. Giá trị của biểu thức \(z = {\left( {1 + i} \right)^2}\) là
Có bao nhiêu số phức z thỏa mãn \(\left| {z + 1 - 3i} \right| = 3\sqrt 2 \) và \({\left( {z + 2i} \right)^2}\) là số thuần ảo?
Khối lăng trụ có diện tích đáy bằng \(24\left( {c{m^2}} \right),\) chiều cao bằng 3(cm) thì có thể tích bằng
Cho a, b, c > 0 và \(a \ne 1.\) Khẳng định nào sau đây là khẳng định sai?
Trong mặt phẳng Oxy số phức z = 2i -1 được biểu diễn bởi điểm M có tọa độ là
Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(\left( d \right):\left\{ \begin{array}{l} x = 3 - t\\ y = - 1 + 2t\\ z = - 3t \end{array} \right.\left( {t \in R} \right).\) Phương trình nào dưới đây là phương trình chính tắc của đường thẳng (d)?
Cho một hình trụ có chiều cao bằng 2 và bán kính đáy bằng 3. Thể tich của khối trụ đã cho bằng
Tìm số phức thỏa mãn \(i\left( {\overline z - 2 + 3i} \right) = 1 + 2i.\)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \(B,BC = a\sqrt 3 ,AC = 2a.\) Cạnh bên SA vuông góc với mặt phẳng đáy và \(SA = a\sqrt 3 .\) Góc giữa đường thẳng AB và mặt phẳng đáy bằng
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a cạnh bên bằng SA vuông góc với đáy, SA = a. Tính khoảng cách từ A đến mặt phẳng (SBC).


