Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất P để 3 quyển được lấy ra có ít nhất một quyển sách là toán.
A. \(P=\frac{2}{7}\)
B. \(P=\frac{5}{42}\)
C. \(P=\frac{37}{42}\)
D. \(P=\frac{1}{21}\)
Lời giải của giáo viên
ToanVN.com
Số cách lấy ba quyển sách bất kì là \(C_{9}^{3}=84\Rightarrow \left| \Omega \right|=84\)
Gọi A là biến cố: “3 quyển được lấy ra có ít nhất một quyển sách là toán”, suy ra \(\overline{A}:\) “3 quyển sách lấy ra không có quyển sách toán” \(\Rightarrow \left| \overline{A} \right|=C_{5}^{3}=10\Rightarrow \left| A \right|=84-10=74\)
\(\Rightarrow P\left( A \right)=\frac{\left| A \right|}{\left| \Omega \right|}=\frac{74}{84}=\frac{37}{42}.\)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Phương trình \(\sin 2x+\cos x=0\) có tổng các nghiệm trong khoảng \(\left( 0;2\pi \right)\) bằng:
Cho hàm số \(y=f\left( x \right)\) liên tục trên R và thỏa mãn \(\int\limits_{{}}^{{}}{f\left( x \right)dx}=4{{x}^{3}}-3{{x}^{2}}+2x+C\). Hàm số \(f\left( x \right)\) là hàm số nào trong các hàm số sau?
Tìm tất cả các giá trị \({{y}_{0}}\) để đường thẳng \(y={{y}_{0}}\) cắt đồ thị hàm số \(y={{x}^{4}}-{{x}^{2}}\) tại bốn điểm phân biệt?
Đường cong trong hình bên là đồ thị của hàm số nào dưới đây?
Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)={{e}^{2x}}\) và \(F\left( 0 \right)=\frac{3}{2}.\) Tính \(F\left( \frac{1}{2} \right).\)
Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \(\overrightarrow{a}=\left( 3;-2;1 \right),\overrightarrow{b}=\left( -2;-1;1 \right)\). Tính \(P=\overrightarrow{a}.\overrightarrow{b}\) ?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = 3a và SA vuông góc với mặt phẳng đáy. Tính thể tích V của khối chóp S.ABCD.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( -1;2;-4 \right)\) và \(B\left( 1;0;2 \right)\). Viết phương trình đường thẳng d đi qua hai điểm A và B.
Tìm tập xác định của hàm số \(y={{\left( 3{{x}^{2}}-1 \right)}^{\frac{1}{3}}}.\)
Biết rằng \(I=\int\limits_{0}^{1}{x\cos 2xdx}=\frac{1}{4}\left( a\sin 2+b\cos 2+c \right)\) với \(a,b,c\in Z\). Mệnh đề nào sau đây là đúng?
Cho hàm số \(y=\frac{2x+1}{1-x}\). Mệnh đề nào sau đây là đúng?
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\left( m+1 \right){{x}^{3}}+\left( m+1 \right){{x}^{2}}-2x+2\) nghịch biến trên R.
Tìm tất cả các giá trị của x thỏa mãn \(\int\limits_{0}^{x}{\sin 2tdt}=0\)
Trong không gian với hệ tọa độ Oxyz cho ba mặt phẳng \(\left( P \right):\,\,x-2y+z-1=0\), \(\left( Q \right):\,\,x-2y+z+8=0\) và \(\left( R \right):\,\,x-2y+z-4=0\). Một đường thẳng d thay đổi cắt ba mặt phẳng \(\left( P \right);\left( Q \right);\left( R \right)\) lần lượt tại A, B, C. Đặt \(T=\frac{A{{B}^{2}}}{4}+\frac{144}{AC}\). Tìm giá trị nhỏ nhất của \(T\).
Trong mặt phẳng phức gọi A, B, C lần lượt là các điểm biểu diễn các số phức \({{z}_{1}}=\left( 1-i \right)\left( 2+i \right),\,\,{{z}_{2}}=1+3i;\,\,{{z}_{3}}=-1-3i.\) Tam giác ABC là


