Câu hỏi Đáp án 3 năm trước 98

Tìm tất cả các giá trị thực của tham số m sao cho phương trình \(3\sqrt {x - 1}  + m\sqrt {x + 1}  = 2\sqrt[4]{{{x^2} - 1}}\) có hai nghiệm thực?

A. \(\dfrac{1}{3} \le m < 1\)    

B. \( - 2 < m \le \dfrac{1}{3}\)    

C. \( - 1 \le m \le \dfrac{1}{4}\)    

D.  \(0 \le m < \dfrac{1}{3}\) 

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

ĐKXĐ : \(\left\{ \begin{array}{l}x - 1 \ge 0\\x + 1 \ge 0\\{x^2} - 1 \ge \end{array} \right. \Leftrightarrow x \ge 1\).

Ta có \(3\sqrt {x - 1}  + m\sqrt {x + 1}  = 2\sqrt[4]{{{x^2} - 1}} = 2\sqrt[4]{{x - 1}}.\sqrt[4]{{x + 1}}\)

Đặt \(\left\{ \begin{array}{l}\sqrt[4]{{x - 1}} = u\\\sqrt[4]{{x + 1}} = v\end{array} \right.\,\,\left( {u,v \ge 0} \right)\), ta có :

\(3{u^2} + m{v^2} = 2uv \Leftrightarrow 3{u^2} - 2uv + m{v^2} = 0 \Leftrightarrow 3{\left( {\dfrac{u}{v}} \right)^2} - 2\dfrac{u}{v} + m = 0\,\,\left( {\dfrac{u}{v} \ge 0} \right)\,\,\left( * \right)\,\,\left( {Do\,\,{v^2} \ne 0} \right)\)

Phương trình ban đầu có hai nghiệm phân biệt khi và chỉ khi phương trình (*) có 2 nghiệm không âm phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 1 - 3m > 0\\S = \dfrac{2}{3} > 0\\P = \dfrac{m}{3} \ge 0\end{array} \right. \Leftrightarrow 0 \le m < \dfrac{1}{3}\).

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y = \dfrac{{{x^2}}}{{1 - x}}\). Đạo hàm cấp 2018 của hàm số \(f\left( x \right)\) là:

Xem lời giải » 3 năm trước 245
Câu 2: Trắc nghiệm

Trong hệ tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng \(BC:\,\,x + 7y - 13 = 0\). Các chân đường cao kẻ từ B, C lần lượt là \(E\left( {2;5} \right);\,\,F\left( {0;4} \right)\). Biết tọa độ đỉnh A là \(A\left( {a;b} \right)\). Khi đó:

Xem lời giải » 3 năm trước 121
Câu 3: Trắc nghiệm

Hàm số có đạo hàm bằng  \(2x + \dfrac{1}{{{x^2}}}\) là:

Xem lời giải » 3 năm trước 120
Câu 4: Trắc nghiệm

Giá trị nhỏ nhất của hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\) là: 

Xem lời giải » 3 năm trước 118
Câu 5: Trắc nghiệm

Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:

Xem lời giải » 3 năm trước 118
Câu 6: Trắc nghiệm

Gọi S là tập các giá trị dương của tham số m sao cho hàm số \(y = {x^3} - 3m{x^2} + 27x + 3m - 2\) đạt cực trị tại \({x_1};{x_2}\) thỏa mãn \(\left| {{x_1} - {x_2}} \right| \le 5\). Biết \(S = \left( {a;b} \right]\). Tính \(T = 2b - a\) ?

Xem lời giải » 3 năm trước 118
Câu 7: Trắc nghiệm

Hàm số \(y = {x^3} - 3{x^2} - 5\) đồng biến trên khoảng nào dưới đây?

Xem lời giải » 3 năm trước 116
Câu 8: Trắc nghiệm

Cho hai số thực x, y thay đổi thỏa mãn điều kiện \({x^2} + {y^2} = 2\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = 2\left( {{x^3} + {y^3}} \right) - 3xy\). Giá trị của \(M + m\) bằng:

Xem lời giải » 3 năm trước 116
Câu 9: Trắc nghiệm

Cho hàm số \(y = {x^3} - {x^2} + 2x + 5\) có đồ thị \(\left( C \right)\). Trong các tiếp tuyến của \(\left( C \right)\), tiếp tuyến có hệ số góc nhỏ nhất, thì hệ số góc của tiếp tuyến đó là

Xem lời giải » 3 năm trước 115
Câu 10: Trắc nghiệm

Cho lăng trụ tam giác ABC.A’B’C’. Đặt \(AA' = a;\,\,AB = b,\,\,AC = c\). Gọi I là điểm thuộc đường thẳng CC’ sao cho \(\overrightarrow {C'I}  = \dfrac{1}{3}\overrightarrow {C'C} \), G là điểm thỏa mãn \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \) . Biểu diễn vectơ\(\overrightarrow {IG} \) qua các vectơ \(\overrightarrow a ;\,\,\overrightarrow b ;\,\,\overrightarrow c \). Trong các khẳng định sau, khẳng định nào là khẳng định đúng?

Xem lời giải » 3 năm trước 115
Câu 11: Trắc nghiệm

Trong không gian với hệ tọa độ \({\rm{Ox}}yz\)cho hai mặt phẳng \(\left( P \right):2x + my - z + 1 = 0\) và \(\left( Q \right):x + 3y + \left( {2m + 3} \right)z - 2 = 0\). Giá trị của \(m\) để \(\left( P \right) \bot \left( Q \right)\) là:

Xem lời giải » 3 năm trước 114
Câu 12: Trắc nghiệm

Cho hình chóp S.ABCD đáy là hình thang vuông tại A và B, \(AB = BC = a;\,\,AD = 2a\). Biết SA vuông góc với đáy (ABCD), \(SA = a\). Gọi M, N lần lượt là trung điểm SB, CD. Tính sin góc giữa đường thẳng MN và mặt phẳng (SAC). 

Xem lời giải » 3 năm trước 114
Câu 13: Trắc nghiệm

Cho tập hợp S gồm 20 phần tử. Tìm số tập con gồm 3 phần tử của S.

Xem lời giải » 3 năm trước 114
Câu 14: Trắc nghiệm

Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\) là:

Xem lời giải » 3 năm trước 114
Câu 15: Trắc nghiệm

Giá trị của m làm cho phương trình \(\left( {m - 2} \right){x^2} - 2mx + m + 3 = 0\) có 2 nghiệm dương phân biệt là:

Xem lời giải » 3 năm trước 113

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »