Tìm tập hợp \(S\) tất cả các giá trị của tham số thực \(m\) để hàm số \(y = \frac{1}{3}{x^3} - \left( {m + 1} \right){x^2} + \left( {{m^2} + 2m} \right)x - 3\) nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
A. \(S = \left[ { - 1;0} \right]\)
B. \(S = \emptyset \)
C. \(S = \left\{ { - 1} \right\}\)
D. \(S = \left\{ 1 \right\}\)
Lời giải của giáo viên
ToanVN.com
TXĐ: \(D = \mathbb{R}\). Ta có: \(y' = {x^2} - 2\left( {m + 1} \right)x + {m^2} + 2m\).
Để hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\) thì \(y' \le 0\,,\,\forall x \in \left( { - 1;1} \right)\)
\( \Leftrightarrow {x^2} - 2\left( {m + 1} \right)x + {m^2} + 2m \le 0\) với \(\forall x \in \left( { - 1;1} \right)\).
Đặt \(f\left( x \right) = {x^2} - 2\left( {m + 1} \right)x + {m^2} + 2m\).
Để \(f\left( x \right) \le 0\,\,\forall x \in \left( { - 1;1} \right)\) thì phương trình \(f\left( x \right) = 0\) phải có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \({x_1} \le - 1 < 1 \le {x_2}\). Khi đó ta có:
\(\left\{ \begin{array}{l}\Delta ' > 0\\{x_1} \le - 1 < {x_2}\\{x_1} < 1 \le {x_2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {m + 1} \right)^2} - {m^2} - 2m > 0\\{x_1} + 1 \le 0 < {x_2} + 1\\{x_1} - 1 < 0 \le {x_2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}1 > 0\\\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) \le 0\\\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_1}{x_2} + \left( {{x_1} + {x_2}} \right) + 1 \le 0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 \le 0\end{array} \right.\,\,\,\left( * \right)\)
Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 1} \right)\\{x_1}{x_2} = {m^2} + 2m\end{array} \right.\).
Khi đó \(\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 2m + 2\left( {m + 1} \right) + 1 \le 0\\{m^2} + 2m - 2\left( {m + 1} \right) + 1 \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 4m + 3 \le 0\\{m^2} - 1 \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - 3 \le m \le - 1\\ - 1 \le m \le 1\end{array} \right. \Leftrightarrow m = - 1\).
Vậy \(S = \left\{ { - 1} \right\}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ:
.jpg.png)
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho khối nón có độ dài đường sinh bằng \(2a\) và bán kính đáy bằng \(a\). Tính thể tích của khối nón đã cho.
Cho \(\int\limits_0^1 {f\left( x \right)dx} = - 2\) và \(\int\limits_0^1 {g\left( x \right)dx} = - 5\), khi đó \(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} \) bằng:
Gọi \(S\) là tập hợp các số tự nhiên có 7 chữ số, lấy ngẫu nhiên một số từ tập \(S\). Xác suất để số lấy được có tận cùng bằng \(3\) và chia hết cho \(7\) có kết quả gần nhất với số nào trong các số sau?
Cho hàm số \(y = \frac{x}{{1 - x}}\,\,\left( C \right)\) và điểm \(A\left( { - 1;1} \right)\). Tìm \(m\) để đường thẳng \(d:\,\,y = mx - m - 1\) cắt \(\left( C \right)\) tại 2 điểm phân biệt \(M,\,\,N\) sao cho \(A{M^2} + A{N^2}\) đạt giá trị nhỏ nhất.
Trong không gian \(Oxyz\), cho hình thang cân \(ABCD\) có hai đáy \(AB,\,\,CD\) thỏa mãn \(CD = 2AB\) và diện tích bằng \(27\), đỉnh \(A\left( { - 1; - 1;0} \right)\), phương trình đường thẳng chứa cạnh \(CD\) là \(\frac{{x - 2}}{2} = \frac{{y + 1}}{2} = \frac{{z - 3}}{1}\). Tìm tọa độ điểm \(D\) biết hoành độ điểm \(B\) lớn hơn hoành độ điểm \(A\).
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A\left( {1; - 2;0} \right)\), \(B\left( {3;3;2} \right)\), \(C\left( { - 1;2;2} \right)\) và \(D\left( {3;3;1} \right)\). Độ dài đường cao của tứ diện \(ABCD\) hạ từ đỉnh \(D\) xuống mặt phẳng \(\left( {ABC} \right)\) bằng:
Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực của phương trình \(f\left( {x + 2019} \right) = 1\) là:
.jpg.png)
Cho hình chóp tứ giác đều \(S.ABCD\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \(AC\) và vuông góc với mặt phẳng \(\left( {SCD} \right)\), cắt đường thẳng \(SD\) tại \(E\). Gọi \(V\) và \({V_1}\) lần lượt là thể tích khối chóp \(S.ABCD\) và \(D.ACE\), biết \(V = 5{V_1}\). Tính côsin của góc tạo bởi mặt bên và mặt đáy của hình chóp \(S.ABCD\).
Khai triển nhị thức \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng. Tìm \(n\).
Tìm tập nghiệm \(S\) của bất phương trình \({3^{x + 1}} - \frac{1}{3} > 0\).
Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a\), \(\angle BAD = {60^0}\), cạnh bên \(SA = a\) và \(SA\) vuông góc với mặt phẳng đáy. Tính khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\).
Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A\left( {2;1; - 1} \right)\), \(B\left( { - 1;0;4} \right)\), \(C\left( {0; - 2; - 1} \right)\). Phương trình nào dưới đây là phương trình của mặt phẳng đi qua \(A\) và vuông góc \(BC\).
Cắt một hình trụ bởi mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng \(3a\). Tính diện tích toàn phần của hình trụ đã cho.
Tìm tham số \(m\) để tồn tại duy nhất cặp số \(\left( {x;y} \right)\) thỏa mãn đồng thời các điều kiện \({\log _{2019}}\left( {x + y} \right) \le 0\) và \(x + y + \sqrt {2xy + m} \ge 1\).


