Lời giải của giáo viên
ToanVN.com
Ta có: \(y'={{x}^{2}}-4x+3.\)
Gọi \(M\left( {{x}_{0}};{{y}_{0}} \right)\) là điểm thuộc đồ thị hàm số đã cho với \({{y}_{0}}=\frac{x_{0}^{3}}{3}-2x_{0}^{2}+3{{x}_{0}}+1.\)
Do tiếp tuyến của đồ thị hàm số tại \(M\left( {{x}_{0}};{{y}_{0}} \right)\) song song với đường thẳng \(y=3x+1\) nên ta có:
\(y'\left( {{x_0}} \right) = 3 \Leftrightarrow x_0^2 - 4{x_0} + 3 = 3 \Leftrightarrow \left[ \begin{array}{l} {x_0} = 0 \Rightarrow {y_0} = 1\\ {x_0} = 4 \Rightarrow {y_0} = \frac{7}{3} \end{array} \right..\)
- Tại điểm \(M\left( 0;1 \right)\) phương trình tiếp tuyến là: \(y-1=3\left( x-0 \right)\Leftrightarrow y=3x+1.\)
- Tại điểm \(M\left( 4;\frac{7}{3} \right)\) phương trình tiếp tuyến là: \(y-\frac{7}{3}=3\left( x-4 \right)\Leftrightarrow y=3x-\frac{29}{3}.\)
Vậy tiếp tuyến của đồ thị hàm số \(y=\frac{{{x}^{3}}}{3}-2{{x}^{2}}+3x+1\) song song với đường thẳng \(y=3x+1\) có phương trình là \(y=3x-\frac{29}{3}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}+1.\) Khẳng định nào sau đây đúng?
Tìm tất cả các giá trị thực của tham số m để hàm số \(y={{x}^{3}}+{{x}^{2}}+mx+1\) đồng biến trên \(\left( -\infty ;+\infty \right).\)
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}\left( x-9 \right){{\left( x-4 \right)}^{2}}.\) Khi đó hàm số \(y=f\left( {{x}^{2}} \right)\) nghịch biến trên khoảng nào?
Cho hình chóp tam giác \(S.ABC\) với \(SA,SB,SC\) đôi một vuông góc và \(SA=SB=SC=a.\) Tính thể tích của khối chóp \(S.ABC.\)
Cho hàm số \(y=f\left( x \right)\) có đồ thị \(f'\left( x \right)\) như hình vẽ
.jpg.png)
Hàm số \(y=f\left( 1-x \right)+\frac{{{x}^{2}}}{2}-x\) nghịch biến trên khoảng
Cho hàm số \(y={{x}^{3}}-3x\) có đồ thị như hình vẽ bên. Phương trình \(\left| {{x}^{3}}-3x \right|={{m}^{2}}+m\) có 6 nghiệm phân biệt khi và chỉ khi:
.jpg.png)
Tìm giá trị nhỏ nhất \(m\) của hàm số: \(y={{x}^{2}}+\frac{2}{x}\) trên đoạn \(\left[ \frac{1}{2};2 \right].\)
Tập xác định của hàm số \({{\left( {{x}^{2}}-3x+2 \right)}^{\pi }}\) là
Giải phương trình \({{\log }_{3}}\left( 2x-1 \right)=1\)
Số cách chọn 5 học sinh trong một lớp có 25 học sinh nam và 16 học sinh nữ là
Tìm tất cả các giá trị thực của tham số a để biểu thức \(B={{\log }_{3}}\left( 2-a \right)\) có nghĩa
Tìm tất cả giá trị của tham số m để phương trình \({{x}^{3}}-3{{x}^{2}}-{{m}^{3}}+3{{m}^{2}}=0\) có ba nghiệm phân biệt?
Tìm tập nghiệm của phương trình \({{4}^{{{x}^{2}}}}={{2}^{x+1}}\)
Tập xác định của phương trình \(\sqrt{x-1}+\sqrt{x-2}=\sqrt{x-3}\) là
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
.png)
Mệnh đề nào dưới đây đúng?


