Lời giải của giáo viên
ToanVN.com
Điều kiện của phương trình: \(\left\{ \begin{array}{l} x - 1 \ge 0\\ x - 2 \ge 0\\ x - 3 \ge 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \ge 1\\ x \ge 2\\ x \ge 3 \end{array} \right. \Leftrightarrow x \ge 3\)
Vậy tập xác định của phương trình là: \(D=\left[ 3;+\infty \right).\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}+1.\) Khẳng định nào sau đây đúng?
Tìm tất cả các giá trị thực của tham số m để hàm số \(y={{x}^{3}}+{{x}^{2}}+mx+1\) đồng biến trên \(\left( -\infty ;+\infty \right).\)
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}\left( x-9 \right){{\left( x-4 \right)}^{2}}.\) Khi đó hàm số \(y=f\left( {{x}^{2}} \right)\) nghịch biến trên khoảng nào?
Cho hình chóp tam giác \(S.ABC\) với \(SA,SB,SC\) đôi một vuông góc và \(SA=SB=SC=a.\) Tính thể tích của khối chóp \(S.ABC.\)
Cho hàm số \(y=f\left( x \right)\) có đồ thị \(f'\left( x \right)\) như hình vẽ
.jpg.png)
Hàm số \(y=f\left( 1-x \right)+\frac{{{x}^{2}}}{2}-x\) nghịch biến trên khoảng
Cho hàm số \(y={{x}^{3}}-3x\) có đồ thị như hình vẽ bên. Phương trình \(\left| {{x}^{3}}-3x \right|={{m}^{2}}+m\) có 6 nghiệm phân biệt khi và chỉ khi:
.jpg.png)
Tìm giá trị nhỏ nhất \(m\) của hàm số: \(y={{x}^{2}}+\frac{2}{x}\) trên đoạn \(\left[ \frac{1}{2};2 \right].\)
Tập xác định của hàm số \({{\left( {{x}^{2}}-3x+2 \right)}^{\pi }}\) là
Giải phương trình \({{\log }_{3}}\left( 2x-1 \right)=1\)
Số cách chọn 5 học sinh trong một lớp có 25 học sinh nam và 16 học sinh nữ là
Tìm tất cả các giá trị thực của tham số a để biểu thức \(B={{\log }_{3}}\left( 2-a \right)\) có nghĩa
Tìm tất cả giá trị của tham số m để phương trình \({{x}^{3}}-3{{x}^{2}}-{{m}^{3}}+3{{m}^{2}}=0\) có ba nghiệm phân biệt?
Tìm tập nghiệm của phương trình \({{4}^{{{x}^{2}}}}={{2}^{x+1}}\)
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
.png)
Mệnh đề nào dưới đây đúng?
Cho hàm số \(y=\frac{2x-m}{x+2}\) với m là tham số, \(m\ne -4.\) Biết \(\underset{x\in \left[ 0;2 \right]}{\mathop{\min }}\,f\left( x \right)+\underset{x\in \left[ 0;2 \right]}{\mathop{\max }}\,f\left( x \right)=-8.\) Giá trị của tham số m bằng


