Thể tích vật thể tròn xoay sinh ra bởi phép quay quanh trục Ox của hình phẳng giới hạn bởi trục Ox và \(y = \sqrt {x\sin x} \,\,(0 \le x \le \pi )\) là:
A. \( - \dfrac{{{\pi ^2}}}{4}\)
B. \(\pi^2\)
C. \(\dfrac{{{\pi ^2}}}{2}\)
D. \( - \dfrac{{{\pi ^2}}}{2}\).
Lời giải của giáo viên
ToanVN.com
Thể tích vật thể tròn xoay sinh ra được xác định bằng công thức sau:
\(V = \pi \int\limits_0^\pi {\left( {x\sin x} \right)dx} = - \pi \int\limits_0^\pi {xd\left( {\cos x} \right)} \)
Đặt \(\left\{ \begin{array}{l}u = x\\dv = d\left( {\cos x} \right)\end{array} \right. \)
\(\Rightarrow \left\{ \begin{array}{l}du = dx\\v = \cos x\end{array} \right.\)
Khi đó
\(V = - \pi \left( {x\cos x} \right)\left| {_0^\pi } \right. + \pi \int\limits_0^\pi {\cos xdx} \)\(\,= - \pi \left( {x\cos x} \right)\left| {_0^\pi } \right. + \pi .\left( {\sin x} \right)\left| {_0^\pi } \right.\)\( = - \pi \left( { - \pi } \right) + 0 = {\pi ^2}\)
Chọn đáp án B.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong các hàm số sau hàm số nào không phải là một nguyên hàm của \(f(x) = \cos x.\sin x\) ?
Trên đồ thị hàm số \(y = {{2x - 1} \over {x + 1}}\) có bao nhiêu điểm có tọa độ nguyên ?
Cho \({\log _2}5 = a,\,{\log _3}5 = b\). Khi đó \({\log _6}5\) tính theo a và b là:
Cho số phức z = 3 + 4i. Giá trị của \(S = 2|z| - 1\) bằng bao nhiêu ?
Tính nguyên hàm \(\int {x\sqrt {a - x} \,dx} \) ta được :
Phương trình tiếp tuyến của đồ thị hàm số \(y = {x^{{{^{_\pi }} \over 2}}}\) tại điểm thuộc đồ thị có hoành độ bằng 1 là:
Gọi x1, x2 là hai nghiệm của phương trình \({\log _2}^2x - 3{\log _2}x + 2 = 0\). Giá trị biểu thức \(P = {x_1}^2 + {x_2}^2\) bằng bao nhiêu ?
Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn cho số phức z thỏa mãn \({z^2}\) là một số ảo là :
Thể tích khối hộp chữ nhật có diện tích đáy S và độ dài cạnh bên a là:
Phương trình mặt cầu có tâm \(I\left( {3;\sqrt 3 ; - 7} \right)\) và tiếp xúc trục tung là:
Có tất cả bao nhiêu giá trị nguyên của m để phương trình \({x^3} - 6{x^2} + m = 0\) có 3 nghiệm phân biệt ?
Khối chóp tam giác có thể tích \(\dfrac{{2{a^3}}}{3}\) và chiều cao \(a\sqrt 3 \) thì diện tích đáy của khối chóp bằng:
Một khối cầu có diện tích đường tròn lớn là \(2\pi \) thì diện tích của khối cầu đó là
Trong mặt phẳng phức, tìm tập hợp điểm M biểu diễn số phức z thỏa mãn \(|z + 1 - i| \le 3\).


