Câu hỏi Đáp án 3 năm trước 55

Thể tích khối lập phương có cạnh \(2a\) bằng:

A. \(8{a^3}\)

Đáp án chính xác ✅

B. \(2{a^3}\)

C. \({a^3}\) 

D. \(6{a^3}\)

Lời giải của giáo viên

verified ToanVN.com

Thể tích khối lập phương là: \(V = {\left( {2a} \right)^3} = 8{a^3}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho khối nón có độ dài đường sinh bằng \(2a\) và bán kính đáy bằng \(a\). Tính thể tích của khối nón đã cho.

Xem lời giải » 3 năm trước 66
Câu 2: Trắc nghiệm

Cho \(\int\limits_0^1 {f\left( x \right)dx}  =  - 2\) và \(\int\limits_0^1 {g\left( x \right)dx}  =  - 5\), khi đó \(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} \) bằng:

Xem lời giải » 3 năm trước 66
Câu 3: Trắc nghiệm

Gọi \(S\) là tập hợp các số tự nhiên có 7 chữ số, lấy ngẫu nhiên một số từ tập \(S\). Xác suất để số lấy được có tận cùng bằng \(3\) và chia hết cho \(7\) có kết quả gần nhất với số nào trong các số sau?

Xem lời giải » 3 năm trước 66
Câu 4: Trắc nghiệm

Cho hàm số \(y = \frac{x}{{1 - x}}\,\,\left( C \right)\) và điểm \(A\left( { - 1;1} \right)\). Tìm \(m\) để đường thẳng \(d:\,\,y = mx - m - 1\) cắt \(\left( C \right)\) tại 2 điểm phân biệt \(M,\,\,N\) sao cho \(A{M^2} + A{N^2}\) đạt giá trị nhỏ nhất.

Xem lời giải » 3 năm trước 65
Câu 5: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem lời giải » 3 năm trước 65
Câu 6: Trắc nghiệm

Trong không gian \(Oxyz\), cho hình thang cân \(ABCD\) có hai đáy \(AB,\,\,CD\) thỏa mãn \(CD = 2AB\) và diện tích bằng \(27\), đỉnh \(A\left( { - 1; - 1;0} \right)\), phương trình đường thẳng chứa cạnh \(CD\) là \(\frac{{x - 2}}{2} = \frac{{y + 1}}{2} = \frac{{z - 3}}{1}\). Tìm tọa độ điểm \(D\) biết hoành độ điểm \(B\) lớn hơn hoành độ điểm \(A\).

Xem lời giải » 3 năm trước 64
Câu 7: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực của phương trình \(f\left( {x + 2019} \right) = 1\) là:

Xem lời giải » 3 năm trước 64
Câu 8: Trắc nghiệm

Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A\left( {1; - 2;0} \right)\), \(B\left( {3;3;2} \right)\), \(C\left( { - 1;2;2} \right)\) và \(D\left( {3;3;1} \right)\). Độ dài đường cao của tứ diện \(ABCD\) hạ từ đỉnh \(D\) xuống mặt phẳng \(\left( {ABC} \right)\) bằng:

Xem lời giải » 3 năm trước 63
Câu 9: Trắc nghiệm

Cho hình chóp tứ giác đều \(S.ABCD\). Mặt phẳng \(\left( P \right)\) chứa đường thẳng \(AC\) và vuông góc với mặt phẳng \(\left( {SCD} \right)\), cắt đường thẳng \(SD\) tại \(E\). Gọi \(V\) và \({V_1}\) lần lượt là thể tích khối chóp \(S.ABCD\) và \(D.ACE\), biết \(V = 5{V_1}\). Tính côsin của góc tạo bởi mặt bên và mặt đáy của hình chóp \(S.ABCD\).

Xem lời giải » 3 năm trước 62
Câu 10: Trắc nghiệm

Tìm tập nghiệm \(S\) của bất phương trình \({3^{x + 1}} - \frac{1}{3} > 0\).

Xem lời giải » 3 năm trước 61
Câu 11: Trắc nghiệm

Khai triển nhị thức \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng. Tìm \(n\).

Xem lời giải » 3 năm trước 61
Câu 12: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a\), \(\angle BAD = {60^0}\), cạnh bên \(SA = a\) và \(SA\) vuông góc với mặt phẳng đáy. Tính khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\).

Xem lời giải » 3 năm trước 60
Câu 13: Trắc nghiệm

Cho hình phẳng \(D\) giới hạn bởi đường cong \(y = \sqrt {2 + \sin x} \), trục hoành và các đường thẳng \(x = 0\), \(x = \pi \). Khối tròn xoay \(D\) tạo thành khi quay \(D\) quanh trục hoành có thể tích \(V\) bằng bao nhiêu?

Xem lời giải » 3 năm trước 60
Câu 14: Trắc nghiệm

Cắt một hình trụ bởi mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng \(3a\). Tính diện tích toàn phần của hình trụ đã cho.

Xem lời giải » 3 năm trước 60
Câu 15: Trắc nghiệm

Cho hàm số \(f\left( x \right)\) có \(f'\left( x \right) = {x^{2017}}.{\left( {x - 1} \right)^{2018}}.{\left( {x + 1} \right)^{2019}},\)\(\forall x \in \mathbb{R}\). Hỏi hàm số đã cho có bao nhiêu điểm cực trị.

Xem lời giải » 3 năm trước 60

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »