Câu hỏi Đáp án 3 năm trước 54

Số điểm cực trị của hàm số \(f\left( x \right) = \int\limits_{2x}^{{x^2}} {\dfrac{{2tdt}}{{1 + {t^2}}}} \) là: 

A. 0

B. 1

C. 2

D. 3

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

\(\begin{array}{l}f\left( x \right) = \int\limits_{2x}^{{x^2}} {\dfrac{{2tdt}}{{{t^2} + 1}}}  = \int\limits_{2x}^{{x^2}} {\dfrac{{d\left( {{t^2} + 1} \right)}}{{{t^2} + 1}}} \\ = \left. {\ln \left( {{t^2} + 1} \right)} \right|_{2x}^{{x^2}} = \ln \left( {{x^4} + 1} \right) - \ln \left( {4{x^2} + 1} \right)\\f'\left( x \right) = \dfrac{{4{x^3}}}{{{x^4} + 1}} - \dfrac{{8x}}{{4{x^2} + 1}} = \dfrac{{4{x^3}\left( {4{x^2} + 1} \right) - 8x\left( {{x^4} + 1} \right)}}{{\left( {4{x^2} + 1} \right)\left( {{x^4} + 1} \right)}}\\ = \dfrac{{8{x^5} + 4{x^3} - 8x}}{{\left( {4{x^2} + 1} \right)\left( {{x^4} + 1} \right)}} = \dfrac{{4x\left( {2{x^4} + {x^2} - 2} \right)}}{{\left( {4{x^2} + 1} \right)\left( {{x^4} + 1} \right)}}\end{array}\)

Nhận xét:

Phương trình \(2{x^4} + {x^2} - 2 = 0\) có 2 nghiệm phân biệt \( \pm \dfrac{{\sqrt { - 1 + \sqrt {17} } }}{2}\) và \(2{x^4} + {x^2} - 2\) đổi dấu tại 2 điểm này.

\(4x\) đổi dấu tại \(x = 0\)

\(\left( {4{x^2} + 1} \right)\left( {{x^4} + 1} \right) > 0,\,\forall x\)

\( \Rightarrow f'\left( x \right)\) đổi dấu tại 3 điểm là \(x =  \pm \dfrac{{\sqrt { - 1 + \sqrt {17} } }}{2}\) và \(x = 0\)

\( \Rightarrow \) Số điểm cực trị của hàm số \(f\left( x \right) = \int\limits_{2x}^{{x^2}} {\dfrac{{2tdt}}{{1 + {t^2}}}} \) là 3.

Chọn: D

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp S.ABC có \(SA = \dfrac{{a\sqrt 3 }}{2}\), các cạnh còn lại cùng bằng a. Bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC là: 

Xem lời giải » 3 năm trước 73
Câu 2: Trắc nghiệm

Phương trình \({4^x} + 1 = {2^x}m.\cos \left( {\pi x} \right)\) có nghiệm duy nhất. Số giá trị của tham số \(m\) thỏa mãn là: 

Xem lời giải » 3 năm trước 71
Câu 3: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz cho tam giác ABC biết \(A(2;1;0),B(3;0;2),C(4;3; - 4)\). Viết phương trình đường phân giác trong góc A. 

Xem lời giải » 3 năm trước 69
Câu 4: Trắc nghiệm

Đồ thị hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) có hai điểm cực trị A và B. Điểm nào dưới đây thuộc đường thẳng AB ? 

Xem lời giải » 3 năm trước 68
Câu 5: Trắc nghiệm

Hàm số \(F\left( x \right) = {e^{{x^2}}}\) là nguyên hàm của hàm số nào trong các hàm số sau: 

Xem lời giải » 3 năm trước 67
Câu 6: Trắc nghiệm

Diện tích mặt cầu ngoại tiếp khối hộp chữ nhật có kích thước: \(a,\,\,\sqrt 3 a,\,\,2a\) là: 

Xem lời giải » 3 năm trước 67
Câu 7: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) đồng thời thỏa mãn \(f\left( 0 \right) = f\left( 1 \right) = 5\). Tính tích phân\(I = \int\limits_0^1 {f'\left( x \right){e^{f\left( x \right)}}{\rm{d}}x} \). 

Xem lời giải » 3 năm trước 67
Câu 8: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, hỏi trong các phương trình sau phương trình nào là phương trình của mặt cầu? 

Xem lời giải » 3 năm trước 66
Câu 9: Trắc nghiệm

Gọi z1, z2 là các nghiệm của phương trình \({z^2} - 2z + 5 = 0\) . Tính \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) .

Xem lời giải » 3 năm trước 66
Câu 10: Trắc nghiệm

Tìm tập xác định của hàm số \(y = {({x^2} - 3x + 2)^\pi }\). 

Xem lời giải » 3 năm trước 65
Câu 11: Trắc nghiệm

Cho đường tròn \((T):{(x - 1)^2} + {(y + 2)^2} = 5\) và hai điểm A(3; -1), B(6; -2). Viết phương trình đường thẳng cắt (T) tại hai điểm C, D sao cho ABCD là hình bình hành. 

Xem lời giải » 3 năm trước 65
Câu 12: Trắc nghiệm

Cho số phức z có \(\left| z \right| = 1\). Tìm giá trị lớn nhất của biểu thức \(P = \left| {{z^2} - z} \right| + \left| {{z^2} + z + 1} \right|\) .

Xem lời giải » 3 năm trước 64
Câu 13: Trắc nghiệm

Cho khối chóp S.ABCD có đáy là hình chữ nhật, AB = a, \(AD = a\sqrt 3 \), SA vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60o. Tính thể tích V của khối chóp S.ABCD.

Xem lời giải » 3 năm trước 64
Câu 14: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng \((P):x + 2y - 2z + 1 = 0,\) \((Q):x + my + (m - 1)z + 2019 = 0\). Khi hai mặt phẳng (P), (Q) tạo với nhau một góc nhỏ nhất thì mặt phẳng (Q) đi qua điểm M nào sau đây? 

Xem lời giải » 3 năm trước 63
Câu 15: Trắc nghiệm

Có bao nhiêu số tự nhiên m để phương trình sau có nghiệm ?\({e^m} + {e^{3m}} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\). 

Xem lời giải » 3 năm trước 63

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »