Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng \((P):x + 2y - 2z + 1 = 0,\) \((Q):x + my + (m - 1)z + 2019 = 0\). Khi hai mặt phẳng (P), (Q) tạo với nhau một góc nhỏ nhất thì mặt phẳng (Q) đi qua điểm M nào sau đây?
A. \(M(2019; - 1;1)\)
B. \(M(0; - 2019;0)\)
C. \(M( - 2019;1;1)\)
D. \(M(0;0; - 2019)\)
Lời giải của giáo viên
ToanVN.com
Gọi \(\overrightarrow {{n_p}} ,\,\,\overrightarrow {{n_Q}} \) lần lượt là các VTPT của \(\left( P \right)\) và \(\left( Q \right)\) ta có \(\overrightarrow {{n_P}} = \left( {1;2; - 2} \right);\,\,\overrightarrow {{n_Q}} = \left( {1;m;m - 1} \right)\).
Khi đó ta có \(\cos \angle \left( {\left( P \right);\left( Q \right)} \right) = \dfrac{{\left| {\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} } \right|}}{{\left| {\overrightarrow {{n_P}} } \right|\left| {\overrightarrow {{n_Q}} } \right|}} = \dfrac{{\left| {1 + 2m - 2m + 2} \right|}}{{3\sqrt {1 + {m^2} + {{\left( {m - 1} \right)}^2}} }} = \dfrac{1}{{\sqrt {2{m^2} - 2m + 2} }}\)
Ta có \(2{m^2} - 2m + 2 = 2\left( {{m^2} - m} \right) + 2 = 2\left( {{m^2} - 2.m.\dfrac{1}{2} + \dfrac{1}{4} - \dfrac{1}{4}} \right) + 2 = 2{\left( {m - \dfrac{1}{2}} \right)^2} + \dfrac{3}{2} \ge \dfrac{3}{2}\)
\( \Rightarrow \cos \angle \left( {\left( P \right);\left( Q \right)} \right) \le \dfrac{1}{{\dfrac{3}{2}}} = \dfrac{2}{3}\). Dấu " =" xảy ra \( \Leftrightarrow m = \dfrac{1}{2}\).
\( \Rightarrow \angle \left( {\left( P \right);\left( Q \right)} \right)\) nhỏ nhất \( \Leftrightarrow m = \dfrac{1}{2} \Rightarrow \left( Q \right):\,\,x + \dfrac{1}{2}y - \dfrac{1}{2}z + 2019 = 0\).
Khi đó \(\left( Q \right)\) đi qua điểm \(M( - 2019;\;1;\;1)\)
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABC có \(SA = \dfrac{{a\sqrt 3 }}{2}\), các cạnh còn lại cùng bằng a. Bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC là:
Phương trình \({4^x} + 1 = {2^x}m.\cos \left( {\pi x} \right)\) có nghiệm duy nhất. Số giá trị của tham số \(m\) thỏa mãn là:
Trong không gian với hệ tọa độ Oxyz cho tam giác ABC biết \(A(2;1;0),B(3;0;2),C(4;3; - 4)\). Viết phương trình đường phân giác trong góc A.
Hàm số \(F\left( x \right) = {e^{{x^2}}}\) là nguyên hàm của hàm số nào trong các hàm số sau:
Diện tích mặt cầu ngoại tiếp khối hộp chữ nhật có kích thước: \(a,\,\,\sqrt 3 a,\,\,2a\) là:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) đồng thời thỏa mãn \(f\left( 0 \right) = f\left( 1 \right) = 5\). Tính tích phân\(I = \int\limits_0^1 {f'\left( x \right){e^{f\left( x \right)}}{\rm{d}}x} \).
Đồ thị hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) có hai điểm cực trị A và B. Điểm nào dưới đây thuộc đường thẳng AB ?
Gọi z1, z2 là các nghiệm của phương trình \({z^2} - 2z + 5 = 0\) . Tính \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) .
Trong không gian với hệ tọa độ Oxyz, hỏi trong các phương trình sau phương trình nào là phương trình của mặt cầu?
Tìm tập xác định của hàm số \(y = {({x^2} - 3x + 2)^\pi }\).
Cho đường tròn \((T):{(x - 1)^2} + {(y + 2)^2} = 5\) và hai điểm A(3; -1), B(6; -2). Viết phương trình đường thẳng cắt (T) tại hai điểm C, D sao cho ABCD là hình bình hành.
Cho số phức z có \(\left| z \right| = 1\). Tìm giá trị lớn nhất của biểu thức \(P = \left| {{z^2} - z} \right| + \left| {{z^2} + z + 1} \right|\) .
Cho khối chóp S.ABCD có đáy là hình chữ nhật, AB = a, \(AD = a\sqrt 3 \), SA vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60o. Tính thể tích V của khối chóp S.ABCD.
Có bao nhiêu số tự nhiên m để phương trình sau có nghiệm ?\({e^m} + {e^{3m}} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\).
Tìm giá trị thực của tham số \(m\)để đường thẳng \(d:y = x - m + 2\) cắt đồ thị hàm số \(y = \dfrac{{2x}}{{x - 1}}\)\(\left( C \right)\) tại hai điểm phân biệt \(A\) và \(B\) sao cho độ dài \(AB\) ngắn nhất.


