Một trang trại mỗi ngày thu hoạch được một tấn rau. Mỗi ngày, nếu bán rau với giá \(30000\) đồng/kg thì hết sạch rau, nếu giá bán cứ tăng thêm \(1000\) đồng/kg thì số rau thừa lại tăng thêm \(20kg\). Số rau thừa này được thu mua làm thức ăn chăn nuôi với giá \(2000\) đồng/kg. Hỏi số tiền bán rau nhiều nhất mà trang trại có thể thu được mỗi ngày là bao nhiêu?
A. \(32\,420\,000\) đồng
B. \(32\,400\,000\) đồng
C. \(34\,400\,000\) đồng
D. \(34\,240\,000\) đồng
Lời giải của giáo viên
ToanVN.com
Gọi \(x\left( {x \ge 0} \right)\) (nghìn đồng) là số tiền tăng lên cho mỗi \(kg\) rau.
Số tiền bán mỗi một \(kg\) rau sau khi tăng là \(x + 30\) (nghìn đồng).
Số \(kg\) rau thừa là \(20x\) \(\left( {x \le 50} \right)\).
Tổng số \(kg\) rau bán được là \(1000 - 20x\) \(\left( {kg} \right)\).
Tổng số tiền thu được là \(T = \left( {1000 - 20x} \right)\left( {30 + x} \right) + 20x.2 = - 20{x^2} + 440x + 30000\).
Mà \( - 20{x^2} + 440x + 30000 = 32420 - 20{\left( {x - 11} \right)^2} \le 32420\).
Do đó \(T \le 32420 \Rightarrow \max T = 32420\), dấu \('' = ''\) xảy ra khi \(x = 11\).
Vậy số tiền nhiều nhất bán được là \(32\,420\,000\) đồng.
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Phương trình \(2f\left( x \right) - 5 = 0\) có bao nhiêu nghiệm âm?
Với \(n\) là số nguyên dương, biểu thức \(T = C_n^0 + C_n^1 + ... + C_n^n\) bằng
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 8\). Tính tổng các giá trị nguyên của \(m\) để phương trình \(f\left( {\left| {x - 1} \right|} \right) + m = 2\) có đúng \(3\) nghiệm phân biệt.
Một khối lăng trụ tứ giác đều có thể tích là \(4\). Nếu gấp đôi các cạnh đáy đồng thời giảm chiều cao của khối lăng trụ này hai lần thì được khối lăng trụ mới có thể tích là:
Tính theo \(a\) thể tích của một khối trụ có bán kính đáy là \(a\), chiều cao bằng \(2a\).
Một khối nón có bán kính đáy bằng \(3\) và góc ở đỉnh bằng \(60^\circ \) thì có thể tích bằng bao nhiêu?
Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên. Tìm kết luận đúng.
Cho hệ phương trình \(\left\{ \begin{array}{l}{2^{x - y}} - {2^y} + x = 2y\\{2^x} + 1 = \left( {{m^2} + 2} \right){.2^y}.\sqrt {1 - {y^2}} \end{array} \right.\,\,\left( 1 \right)\), \(m\) là tham số. Gọi \(S\) là tập các giá trị nguyên để hệ \(\left( 1 \right)\) có một nghiệm duy nhất. Tập S có bao nhiêu phần tử?
Bảng biến thiên ở hình bên là của một trong bốn hàm số dưới đây. Tìm hàm số đó.
Cho tam giác \(ABC\) vuông tại \(A\). Đường thẳng \(d\) đi qua \(A\) và song song với \(BC\). Cạnh \(BC\) quay xung quanh \(d\) tạo thành một mặt xung quanh của hình trụ có thể tích là \({V_1}\). Tam giác \(ABC\) quay xung quanh trục \(d\) được khối tròn xoay có thể tích là \({V_2}\). Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\).
Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{ - x + 1}}{{3x - 2}}\) tại giao điểm của đồ thị hàm số với trục tung có hệ số góc là
Biết \(F\left( x \right) = \left( {a\,{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^2} - 5x + 2} \right){e^{ - x}}\) trên \(\mathbb{R}\) . Giá trị của biểu thức \(f\left( {F\left( 0 \right)} \right)\) bằng:
Tập nghiệm của phương trình \({\log _{0,25}}\left( {{x^2} - 3x} \right) = - 1\) là
Hệ số của \({x^5}\) trong khai triển biểu thức \({\left( {x + 3} \right)^8} - {x^2}{\left( {2 - x} \right)^5}\) thành đa thức là:
Hình lập phương có độ dài đường chéo là \(6\) thì có thể tích là


