Lời giải của giáo viên
ToanVN.com
Ta có: \(2f\left( x \right) - 5 = 0 \Leftrightarrow f\left( x \right) = \dfrac{5}{2}\).
Nghiệm của phương trình chính là hoành độ giao điểm của đường thẳng \(y = \dfrac{5}{2}\) với đồ thị hàm số \(y = f\left( x \right)\).
Quan sát đồ thị ta thấy đường thẳng \(y = \dfrac{5}{2}\) cắt đồ thị hàm số tại \(3\) điểm phân biệt, trong đó có \(2\) điểm có hoành độ âm và \(1\) điểm có hoành độ dương.
Vậy phương trình có \(2\) nghiệm âm.
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Với \(n\) là số nguyên dương, biểu thức \(T = C_n^0 + C_n^1 + ... + C_n^n\) bằng
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 8\). Tính tổng các giá trị nguyên của \(m\) để phương trình \(f\left( {\left| {x - 1} \right|} \right) + m = 2\) có đúng \(3\) nghiệm phân biệt.
Một khối lăng trụ tứ giác đều có thể tích là \(4\). Nếu gấp đôi các cạnh đáy đồng thời giảm chiều cao của khối lăng trụ này hai lần thì được khối lăng trụ mới có thể tích là:
Tính theo \(a\) thể tích của một khối trụ có bán kính đáy là \(a\), chiều cao bằng \(2a\).
Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên. Tìm kết luận đúng.
Một khối nón có bán kính đáy bằng \(3\) và góc ở đỉnh bằng \(60^\circ \) thì có thể tích bằng bao nhiêu?
Cho hệ phương trình \(\left\{ \begin{array}{l}{2^{x - y}} - {2^y} + x = 2y\\{2^x} + 1 = \left( {{m^2} + 2} \right){.2^y}.\sqrt {1 - {y^2}} \end{array} \right.\,\,\left( 1 \right)\), \(m\) là tham số. Gọi \(S\) là tập các giá trị nguyên để hệ \(\left( 1 \right)\) có một nghiệm duy nhất. Tập S có bao nhiêu phần tử?
Bảng biến thiên ở hình bên là của một trong bốn hàm số dưới đây. Tìm hàm số đó.
Biết \(F\left( x \right) = \left( {a\,{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {2{x^2} - 5x + 2} \right){e^{ - x}}\) trên \(\mathbb{R}\) . Giá trị của biểu thức \(f\left( {F\left( 0 \right)} \right)\) bằng:
Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{ - x + 1}}{{3x - 2}}\) tại giao điểm của đồ thị hàm số với trục tung có hệ số góc là
Cho tam giác \(ABC\) vuông tại \(A\). Đường thẳng \(d\) đi qua \(A\) và song song với \(BC\). Cạnh \(BC\) quay xung quanh \(d\) tạo thành một mặt xung quanh của hình trụ có thể tích là \({V_1}\). Tam giác \(ABC\) quay xung quanh trục \(d\) được khối tròn xoay có thể tích là \({V_2}\). Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\).
Tập nghiệm của phương trình \({\log _{0,25}}\left( {{x^2} - 3x} \right) = - 1\) là
Hệ số của \({x^5}\) trong khai triển biểu thức \({\left( {x + 3} \right)^8} - {x^2}{\left( {2 - x} \right)^5}\) thành đa thức là:
Hình lập phương có độ dài đường chéo là \(6\) thì có thể tích là
Cho khối lập phương \(ABCD.A'B'C'D'.\) Cắt khối lập phương trên bởi các mặt phẳng \(\left( {AB'D'} \right)\) và \(\left( {C'BD} \right)\) ta được ba khối đa diện. Xét các mệnh đề sau :
(I) : Ba khối đa diện thu được gồm hai khối chóp tam giác đều và một khối lăng trụ tam giác.
(II) : Ba khối đa diện thu được gồm hai khối tứ diện và một khối bát diện đều.
(III) : Trong ba khối đa diện thu được có hai khối đa diện bằng nhau.Số mệnh đề đúng là :


