Một người hàng tháng gửi vào ngân hàng một khoảng tiền T theo hình thức lãi kép với lãi suất 0,6% mỗi tháng. Biết sau 15 tháng người đó có số tiền là 10 triệu đồng. Hỏi số tiền T người đó gửi hàng tháng là bao nhiêu? (Chọn đáp án gần đúng nhất)
A. 643.000
B. 535.000
C. 613.000
D. 635.000
Lời giải của giáo viên
ToanVN.com
Sau 1 tháng người đó có số tiền: \({{T}_{1}}=\left( 1+r \right)T\)
Sau 2 tháng người đó có số tiền: \({{T}_{2}}=\left( T+{{T}_{1}} \right)\left( 1+r \right)=\left( 1+r \right)T+{{\left( 1+r \right)}^{2}}T\)
Theo quy luật đó sau 15 tháng người đó có số tiền là
\({{T}_{15}}=\left( 1+r \right)T\left[ 1+\left( 1+r \right)+...+{{\left( 1+r \right)}^{14}} \right]=T\left( 1+r \right)\frac{{{\left( 1+r \right)}^{15}}-1}{r}\)
Theo giả thiết thì \({{T}_{10}}=10\) và r = 0.006 suy ra \(T\approx 635.000\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \frac{{ax + b}}{{x + c}}\) có đồ thị như hình bên với \(a,b,c \in Z.\) Tính giá trị của biểu thức T = a - 3b + 2c?
.png)
Cho khối hộp chữ nhật có độ dài ba kích thước lần lượt là 4, 6, 8. Thể tích khối hộp chữ nhật đã cho bằng
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng \(\left( \alpha \right):x - 3y - 2z - 6 = 0\). Vecto nào không phải là vecto pháp tuyến của \((\alpha)\)?
Trong không gian Oxyz, điểm nào sau đây thuộc đường thẳng đi qua hai điểm A(1;2;-1) và B(-1;1;1)?
Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Biết \(SA = a,\;SN = \frac{{a\sqrt 7 }}{2}\), \(\widehat {SCA} = {45^0}\). Tính khoảng cách từ điểm SM tới đường thẳng BC (minh hoạ như hình bên) .
.png)
Nghiệm của phương trình \({\log _2}\left( {x + 1} \right) = 3\) là
Cho hàm số \(y = - {x^3} - m{x^2} + \left( {4m + 9} \right)x + 5\), với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên R?
Giá trị lớn nhất của hàm số \(y = \sqrt { - {x^2} + 3x + 4} \) là bao nhiêu ?
Tính môđun số phức nghịch đảo của số phức \(z = {\left( {1 - 2i} \right)^2}\)
Trong không gian Oxyz, mặt cầu \((S):{x^2} + {y^2} + {z^2} + 8x - 4y - 6z - 7 = 0\) có tâm và bán kính là:
Có bao nhiêu giá trị nguyên dương của m hàm số \(f\left( x \right) = \frac{1}{3}{x^3} - m{x^2} + \left( {5m + 6} \right)x - 1\) đồng biến trên R.
Cho a, b là các số thực dương thỏa mãn \({\log _4}a + {\log _9}{b^2} = 5\) và \({\log _4}{a^2} + {\log _9}b = 4\). Giá trị ab là:
Cho hình chóp S.ABC có mặt bên SAB là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d từ A đến mặt phẳng (SBC), biết \(BC = a\sqrt3\), AC = 2a.
Cho hàm số f(x) có \(f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {x + 2} \right)^5}\). Số điểm cực trị của hàm số đã cho là
Cho hàm số \(y = {x^3} + b{x^2} + d\) \(\left( {b,d \in R } \right)\) có đồ thị như hình dưới đây. Mệnh đề nào dưới đây đúng?
.png)


