Câu hỏi Đáp án 3 năm trước 64

Một khối pha lê gồm một hình cầu (H1) bán kính R và một hình nón (H2) có bán kính đáy R và đường sinh lần lượt là r, l thỏa mãn \(r = \frac{1}{2}l\) và \(l = \frac{3}{2}R\) xếp chồng lên nhau (hình vẽ). Biết tổng diện tích mặt cầu (H1) và diện tích toàn phần của hình nón (H2) là 91 cm2. Tính diện tích của khối cầu (H1).

A. \(\frac{{104}}{5}c{m^2}\)

B. \(16c{m^2}\)

C. \(64c{m^2}\)

Đáp án chính xác ✅

D. \(\frac{{26}}{5}c{m^2}\)

Lời giải của giáo viên

verified ToanVN.com

Ta có: \(\left\{ \begin{array}{l}
r = \frac{1}{2}l\\
l = \frac{3}{2}R
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
r = \frac{1}{2}.\frac{3}{2}R = \frac{3}{4}R\\
l = \frac{3}{2}R
\end{array} \right.\) 

Diện tích toàn phần của hình nón là \({S_1} = \pi rl + \pi {r^2} = \pi \left( {\frac{3}{4}R} \right).\frac{3}{2}R + \pi {\left( {\frac{3}{4}R} \right)^2} = \pi \frac{{27}}{{16}}{R^2}\)

Diện tích mặt cầu là \({S_2} = 4\pi {R^2}\).

Theo bài ra ta có: \({S_1} + {S_2} = 91 \Leftrightarrow \pi \frac{{27}}{{16}}{R^2} + 4\pi {R^2} = 91 \Leftrightarrow \frac{{91}}{{16}}\pi {R^2} = 91 \Leftrightarrow \pi {R^2} = 16\).

Vậy diện tích mặt cầu là: \({S_2} = 4\pi {R^2} = 4.16 = 64\left( {c{m^2}} \right)\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(f\left( x \right) = {x^2} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2\). Tìm tất cả các giá trị thực của tham số m để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 cực trị.

Xem lời giải » 3 năm trước 195
Câu 2: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên sau:

Hàm số \(y = \left| {f\left( x \right)} \right|\) có bao nhiêu điểm cực trị?

Xem lời giải » 3 năm trước 76
Câu 3: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:

Đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

 

Xem lời giải » 3 năm trước 75
Câu 4: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\) trên R. Hình vẽ bên là đồ thị của hàm số \(y=f'(x)\). Hàm số \(g\left( x \right) = f\left( {x - {x^2}} \right)\) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Xem lời giải » 3 năm trước 71
Câu 5: Trắc nghiệm

Đồ thị sau là đồ thị của hàm số nào trong bốn hàm số cho dưới đây

Xem lời giải » 3 năm trước 71
Câu 6: Trắc nghiệm

Hàm số \(f\left( x \right) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + ... + C_{2019}^{2019}{x^{2019}}\) có bao nhiêu điểm cực trị?

Xem lời giải » 3 năm trước 71
Câu 7: Trắc nghiệm

Gọi S là tập hợp các giá trị thực của tham số m để phương trình \({4^x} - m{.2^x} + 2m + 1 = 0\) có nghiệm. Tập R\S có bao nhiêu giá trị nguyên?

Xem lời giải » 3 năm trước 71
Câu 8: Trắc nghiệm

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, \(\angle BSA = 60^\circ \). Tính thể tích V của khối chóp S.ABCD?

Xem lời giải » 3 năm trước 70
Câu 9: Trắc nghiệm

Trong không gian, cho hình chóp S.ABCSA, AB, BC đôi một vuông góc với nhau và SA = a, SB = b, SC = c. Mặt cầu đi qua S, A, B, C có bán kính bằng

Xem lời giải » 3 năm trước 70
Câu 10: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB cân tại S có SA = SB = 2a nằm trong mặt phẳng vuông góc với đáy ABCD. Gọi \(\alpha \) là góc giữa SD và mặt phẳng đáy (ABCD). Mệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 69
Câu 11: Trắc nghiệm

Hàm số \(y =  - {x^4} - {x^2} + 1\) có mấy điểm cực trị?

Xem lời giải » 3 năm trước 68
Câu 12: Trắc nghiệm

Số giá trị nguyên của tham số \(m \in \left[ { - 10;10} \right]\) để bất phương trình \(\sqrt {3 + x}  + \sqrt {6 - x}  - \sqrt {18 + 3x - {x^2}}  \le {m^2} - m + 1\) nghiệm đúng \(\forall x \in \left[ { - 3;6} \right]\) là

Xem lời giải » 3 năm trước 68
Câu 13: Trắc nghiệm

Tìm các giá trị thực của tham số m để hàm số \(f\left( x \right) = {x^3} + 3{x^2} - \left( {{m^2} - 3m + 2} \right)x + 5\) đồng biến trên khoảng (0;2)

Xem lời giải » 3 năm trước 68
Câu 14: Trắc nghiệm

Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi M, N lần lượt là trung điểm của SB, SC. Biết \(\left( {AMN} \right) \bot \left( {SBC} \right)\). Thể tích của khối chóp S.ABC bằng

Xem lời giải » 3 năm trước 67
Câu 15: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {x - 2} \right)\). Tìm khoảng nghịch biến của đồ thị hàm số \(y=f(x)\).

Xem lời giải » 3 năm trước 66

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »