Câu hỏi Đáp án 3 năm trước 67

Cho hình chóp đều S.ABC có đáy là tam giác đều cạnh a. Gọi M, N lần lượt là trung điểm của SB, SC. Biết \(\left( {AMN} \right) \bot \left( {SBC} \right)\). Thể tích của khối chóp S.ABC bằng

A. \(\frac{{{a^3}\sqrt {26} }}{{24}}\)

B. \(\frac{{{a^3}\sqrt 5 }}{{24}}\)

Đáp án chính xác ✅

C. \(\frac{{{a^3}\sqrt 5 }}{8}\)

D. \(\frac{{{a^3}\sqrt {13} }}{{18}}\)

Lời giải của giáo viên

verified ToanVN.com

Gọi D là trung điểm của BC. Do \(\Delta SBC\) cân tại \(S \Rightarrow SD \bot BC\).

MN là đường trung bình của \(\Delta SBC \Rightarrow MN//BC \Rightarrow MN \bot SD\) và \(MN = \frac{1}{2}BD = \frac{a}{2}\).

Gọi \(H = MN \cap SD \Rightarrow SH \bot MN\) 

Ta có: \(\left\{ \begin{array}{l}
\left( {AMN} \right) \bot \left( {SCD} \right)\\
\left( {AMN} \right) \cap \left( {SCD} \right) = MN\\
\left( {SCD} \right) \supset SH \bot MN
\end{array} \right. \Rightarrow SH \bot \left( {AMN} \right)\).

Tương tự ta chứng minh được \(AH \bot \left( {SCD} \right) \Rightarrow AH \bot SD\) tại H là trung điểm của SD.

\( \Rightarrow \Delta SAD\) cân tại A \( \Rightarrow SA = AD = \frac{{a\sqrt 3 }}{2} = SB = SC\).

Áp dụng định lí Pytago trong tam giác vuông SBD có \(SD = \sqrt {S{B^2} - B{D^2}}  = \frac{{a\sqrt 2 }}{2}\).

\( \Rightarrow SH = \frac{1}{2}SD = \frac{{a\sqrt 2 }}{4}\).

Áp dụng định lí Pytago trong tam giác vuông SAH ta có \(AH = \sqrt {S{A^2} - S{H^2}}  = \frac{{a\sqrt {10} }}{4}\).

\(\begin{array}{l}
 \Rightarrow {S_{\Delta AMN}} = \frac{1}{2}AH.MN = \frac{1}{2}.\frac{{a\sqrt {10} }}{4}.\frac{a}{2} = \frac{{{a^2}\sqrt {10} }}{{16}}\\
 \Rightarrow {V_{S.AMN}} = \frac{1}{3}SH.{S_{\Delta AMN}} = \frac{1}{3}.\frac{{a\sqrt 2 }}{4}.\frac{{{a^2}\sqrt {10} }}{{16}} = \frac{{{a^2}\sqrt 5 }}{{96}}
\end{array}\)

Ta có: \(\frac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SB}}.\frac{{SN}}{{SC}} = \frac{1}{4} \Rightarrow {V_{S.ABC}} = 4{V_{S.AMN}} = \frac{{{a^3}\sqrt 5 }}{{24}}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(f\left( x \right) = {x^2} - \left( {2m - 1} \right){x^2} + \left( {2 - m} \right)x + 2\). Tìm tất cả các giá trị thực của tham số m để hàm số \(y = f\left( {\left| x \right|} \right)\) có 5 cực trị.

Xem lời giải » 3 năm trước 195
Câu 2: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên sau:

Hàm số \(y = \left| {f\left( x \right)} \right|\) có bao nhiêu điểm cực trị?

Xem lời giải » 3 năm trước 76
Câu 3: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:

Đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

 

Xem lời giải » 3 năm trước 74
Câu 4: Trắc nghiệm

Hàm số \(f\left( x \right) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + ... + C_{2019}^{2019}{x^{2019}}\) có bao nhiêu điểm cực trị?

Xem lời giải » 3 năm trước 71
Câu 5: Trắc nghiệm

Gọi S là tập hợp các giá trị thực của tham số m để phương trình \({4^x} - m{.2^x} + 2m + 1 = 0\) có nghiệm. Tập R\S có bao nhiêu giá trị nguyên?

Xem lời giải » 3 năm trước 71
Câu 6: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\) trên R. Hình vẽ bên là đồ thị của hàm số \(y=f'(x)\). Hàm số \(g\left( x \right) = f\left( {x - {x^2}} \right)\) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Xem lời giải » 3 năm trước 70
Câu 7: Trắc nghiệm

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, \(\angle BSA = 60^\circ \). Tính thể tích V của khối chóp S.ABCD?

Xem lời giải » 3 năm trước 70
Câu 8: Trắc nghiệm

Trong không gian, cho hình chóp S.ABCSA, AB, BC đôi một vuông góc với nhau và SA = a, SB = b, SC = c. Mặt cầu đi qua S, A, B, C có bán kính bằng

Xem lời giải » 3 năm trước 70
Câu 9: Trắc nghiệm

Đồ thị sau là đồ thị của hàm số nào trong bốn hàm số cho dưới đây

Xem lời giải » 3 năm trước 70
Câu 10: Trắc nghiệm

Tìm các giá trị thực của tham số m để hàm số \(f\left( x \right) = {x^3} + 3{x^2} - \left( {{m^2} - 3m + 2} \right)x + 5\) đồng biến trên khoảng (0;2)

Xem lời giải » 3 năm trước 68
Câu 11: Trắc nghiệm

Số giá trị nguyên của tham số \(m \in \left[ { - 10;10} \right]\) để bất phương trình \(\sqrt {3 + x}  + \sqrt {6 - x}  - \sqrt {18 + 3x - {x^2}}  \le {m^2} - m + 1\) nghiệm đúng \(\forall x \in \left[ { - 3;6} \right]\) là

Xem lời giải » 3 năm trước 68
Câu 12: Trắc nghiệm

Hàm số \(y =  - {x^4} - {x^2} + 1\) có mấy điểm cực trị?

Xem lời giải » 3 năm trước 68
Câu 13: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB cân tại S có SA = SB = 2a nằm trong mặt phẳng vuông góc với đáy ABCD. Gọi \(\alpha \) là góc giữa SD và mặt phẳng đáy (ABCD). Mệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 68
Câu 14: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {x - 2} \right)\). Tìm khoảng nghịch biến của đồ thị hàm số \(y=f(x)\).

Xem lời giải » 3 năm trước 66
Câu 15: Trắc nghiệm

Công thức tính diện tích xung quanh \(S_{xq}\) của hình nón có đường sinh l, bán kính đáy r

Xem lời giải » 3 năm trước 65

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »