Một khối gỗ hình trụ tròn xoay có bán kính đáy bằng 1, chiều cao bằng 2. Người ta khoét từ hai đầu khối gỗ hai nửa khối cầu mà đường tròn đáy của khối gỗ là đường tròn lớn của mỗi nửa khối cầu. Tỉ số thể tích phần còn lại của khối gỗ và cả khối gỗ ban đầu là
A. \(\frac{2}{3}\)
B. \(\frac{1}{4}\)
C. \(\frac{1}{3}\)
D. \(\frac{1}{2}\)
Lời giải của giáo viên
ToanVN.com
Hai nửa khối cầu ghép lại được khối cầu có thể tích là:
\({V_1} = \frac{4}{3}\pi {.1^3} = \frac{{4\pi }}{3}\)
Thể tích của khối trụ tròn xoay ba đầu
\(V = \pi {.1^2}.2 = 2\pi \)
Tỉ số thể tích phần còn lại của khối gỗ và cả khối gỗ ban đầu là:
\(\frac{{V - {V_1}}}{V} = \frac{1}{3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(a = {\log _2}5\). Tính \({\log _4}1250\) theo \(a\).
Số nghiệm của phương trình \({50^x} + {2^{x + 5}} = {3.7^x}\) là
Tập xác định của hàm số \(y = {\left( {x - 1} \right)^{ - 4}}\) là
Cho hình nón tròn xoay có độ dài đường sinh là \(2a\), góc ở đỉnh của hình nón bằng \(60^0\). Thể tích \(V\) của khối nón đã cho là
Thể tích của khối cầu nội tiếp hình lập phương có cạnh bằng \(a\sqrt 2 \) là
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{3\cos x - 1}}{{3 + \cos x}}\). Tổng M+m là
Hàm số \(y = \frac{1}{3}{x^3} + {x^2} - 3x + 1\) đạt cực tiểu tại điểm
Tìm giá trị lớn nhất của hàm số \(y = x - {e^{2x}}\) trên đoạn \(\left[ { - 1;1} \right]\).
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) \(\left( {a \ne 0} \right)\) có đồ thị như hình dưới đây.
.png)
Khẳng định nào dưới đây đúng?
Cho hình chóp đều S.ABC có độ dài cạnh đáy bằng 2, điểm M thuộc cạnh SA sao cho SA=4SM và SA vuông góc với mặt phẳng ABCD. Thể tích V của khối chóp S.ABC là
Tính thể tích \(V\) của khối chóp tứ giác đều \(S.ABCD\) mà \(SAC\) là tam giác đều cạnh \(a\).
Cho hình chóp S.ABĐ có đáy ABCD là hình chữ nhật, \(AB = AD\sqrt 2 ,\,\,SA \bot \left( {ABC} \right)\). Gọi M là trung điểm của AB. Góc giữa hai mặt phẳng (SAC) và (SDM) bằng
Cho hàm số \(f\left( x \right) = \ln x - x\). Khẳng định nào dưới đây đúng?


