Lời giải của giáo viên
ToanVN.com
Đặt \(y=cos x ( - 1 \le t \le 1)\)
Xét hàm số \(y = \frac{{3t - 1}}{{t + 3}}\) trên [-1;1]. Ta có \(y' = \frac{{10}}{{{{\left( {t + 3} \right)}^2}}} > 0,\forall x \in \left[ { - 1;1} \right]\)
Suy ra \(M = \mathop {\max }\limits_{\left[ { - 1;1} \right]} y = y\left( 1 \right) = \frac{1}{2},m = \mathop {\min }\limits_{\left[ { - 1;1} \right]} y = y\left( { - 1} \right) = - 2\). Khi đó \(M + m = \frac{1}{2} - 2 = - \frac{3}{2}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \(a = {\log _2}5\). Tính \({\log _4}1250\) theo \(a\).
Số nghiệm của phương trình \({50^x} + {2^{x + 5}} = {3.7^x}\) là
Tập xác định của hàm số \(y = {\left( {x - 1} \right)^{ - 4}}\) là
Thể tích của khối cầu nội tiếp hình lập phương có cạnh bằng \(a\sqrt 2 \) là
Cho hình nón tròn xoay có độ dài đường sinh là \(2a\), góc ở đỉnh của hình nón bằng \(60^0\). Thể tích \(V\) của khối nón đã cho là
Hàm số \(y = \frac{1}{3}{x^3} + {x^2} - 3x + 1\) đạt cực tiểu tại điểm
Tìm giá trị lớn nhất của hàm số \(y = x - {e^{2x}}\) trên đoạn \(\left[ { - 1;1} \right]\).
Cho hình chóp đều S.ABC có độ dài cạnh đáy bằng 2, điểm M thuộc cạnh SA sao cho SA=4SM và SA vuông góc với mặt phẳng ABCD. Thể tích V của khối chóp S.ABC là
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) \(\left( {a \ne 0} \right)\) có đồ thị như hình dưới đây.
.png)
Khẳng định nào dưới đây đúng?
Tính thể tích \(V\) của khối chóp tứ giác đều \(S.ABCD\) mà \(SAC\) là tam giác đều cạnh \(a\).
Cho hình chóp S.ABĐ có đáy ABCD là hình chữ nhật, \(AB = AD\sqrt 2 ,\,\,SA \bot \left( {ABC} \right)\). Gọi M là trung điểm của AB. Góc giữa hai mặt phẳng (SAC) và (SDM) bằng
Số cách chọn đồng thời ra 3 người từ một nhóm có 12 người là
Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường tròn \((C_1)\) và \((C_2)\) lần lượt có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 1\) và \({\left( {x + 1} \right)^2} + {y^2} = 1\). Biết đồ thị hàm số \(y = \frac{{ax + b}}{{x + c}}\) đi qua tâm của \((C_1)\), đi qua tâm của \(( C_2)\) và có các đường tiệm cận tiếp xúc với cả \((C_1)\) và \((C_2)\). Tổng \(a+b+c\) là


