Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng 10 cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết AB = 5 cm, OH = 4 cm. Tính diện tích bề mặt hoa văn đó.
.png)
A. \(\frac{{160}}{3}{\rm{c}}{{\rm{m}}^2}\)
B. \(\frac{{140}}{3}{\rm{c}}{{\rm{m}}^2}\)
C. \(\frac{{14}}{3}{\rm{c}}{{\rm{m}}^2}\)
D. \(50{\rm{ c}}{{\rm{m}}^2}\)
Lời giải của giáo viên
ToanVN.com
.jpg.png)
Đưa parabol vào hệ trục Oxy ta tìm được phương trình là: \(\left( P \right):y=-\frac{16}{25}{{x}^{2}}+\frac{16}{5}x\)
Diện tích hình phẳng giới hạn bởi \(\left( P \right):y=-\frac{16}{25}{{x}^{2}}+\frac{16}{5}x\), trục hoành và các đường thẳng x=0, x=5 là: \(S=\int\limits_{0}^{5}{\left( -\frac{16}{25}{{x}^{2}}+\frac{16}{5}x \right)}\text{d}x=\frac{40}{3}\)
Tổng diện tích phần bị khoét đi: \({{S}_{1}}=4S=\frac{160}{3}\] \[\text{c}{{\text{m}}^{2}}\)
Diện tích của hình vuông là: \({{S}_{hv}}=100\text{ c}{{\text{m}}^{2}}\)
Vậy diện tích bề mặt hoa văn là: \({{S}_{2}}={{S}_{hv}}-{{S}_{1}}=100-\frac{160}{3}=\frac{140}{3}\text{ c}{{\text{m}}^{2}}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Số nghiệm nguyên của bất phương trình \({\left( {17 - 12\sqrt 2 } \right)^x} \ge {\left( {3 + \sqrt 8 } \right)^{{x^2}}}\) là
Cho hàm số \(y = \frac{{2x - 1}}{{x + 1}}\). Mệnh đề nào dưới đây là đúng.
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=\frac{3x-1}{x-3}\) trên đoạn \(\left[ 0\,;\,2 \right]\). Tính 2M-m.
Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?
Tính thể tích V của khối trụ có bán kính đáy r = 10cm và chiều cao h = 6cm.
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng \(\Delta \) là giao tuyến của hai mặt phẳng \(\left( P \right):z - 1 = 0\) và \(\left( Q \right):x + y + z - 3 = 0\). Gọi d là đường thẳng nằm trong mặt phẳng (P), cắt đường thẳng \(\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{{ - 1}}\) và vuông góc với đường thẳng \(\Delta \). Phương trình của đường thẳng d là
Điểm nào trong hình vẽ bên là điểm biểu diễn của số phức \(z = - 1 + 2i?\)
.jpg.png)
Tổng lập phương các nghiệm thực của phương trình \({3^{{x^2} - 4x + 5}} = 9\) là
Cho số phức \({{z}_{1}}=3+2i\), \(\,{{z}_{2}}=6+5i\). Tìm số phức liên hợp của số phức \(z=6{{z}_{1}}+5{{z}_{2}}\)
Cho khối chóp S.ABC có \(SA\,\bot \,\,\left( ABC \right)\), tam giác ABC vuông tại B, \(AC=\,2a, BC=a,SB=2a\sqrt{3}\). Tính góc giữa SA và mặt phẳng \(\,\left( SBC \right)\).
Cho số phức z = a + bi ( với \(a,b \in R\)) thỏa \(\left| z \right|\left( {2 + i} \right) = z - 1 + i\left( {2z + 3} \right)\). Tính S = a + b.
Trong không gian với trục hệ tọa độ Oxyz, cho \(\overrightarrow{a}=-\overrightarrow{i}+2\overrightarrow{j}-3\overrightarrow{k}.\) Tọa độ của vectơ \(\overrightarrow{a}\) là:
Cho \(\int\limits_0^1 {\left[ {f\left( x \right) - 2g\left( x \right)} \right]{\rm{d}}x} = 12\) và \(\int\limits_0^1 {g\left( x \right){\rm{d}}x} = 5\), khi đó \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \) bằng
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình tham số của đường thẳng đi qua hai điểm A(1;0;1) và B(3;2;-1).


