Lớp 12A có 35 học sinh, trong đó có 3 học sinh cùng tên là Trang, 2 học sinh cùng tên là Huy. Xếp ngẫu nhiên 35 học sinh thành một hàng dọXác suất để 3 học sinh tên Trang đứng cạnh nhau và 2 học sinh tên Huy đứng cạnh nhau là
A. \(\dfrac{1}{{2992}}.\)
B. \(\dfrac{1}{{3246320}}.\)
C. \(\dfrac{1}{{39270}}.\)
D. \(\dfrac{2}{{6545}}.\)
Lời giải của giáo viên
ToanVN.com
Số cách xếp \(35\) học sinh thành 1 hàng dọc là \(n\left( \Omega \right) = 35!\)
Coi mỗi học sinh đứng vào 1 chỗ đồng thời coi 3 học sinh tên Trang chỉ đứng vào 1 chỗ và 2 học sinh tên Huy chỉ đứng vào 1 chỗ thì còn lại 32 chỗ đứng.
Số cách sắp xếp 32 chỗ này thành 1 hàng dọc là \(32!\), đồng thời ta có \(3!\) cách xếp 3 học sinh tên Trang và \(2!\) cách xếp 2 học sinh tên Huy nên số cách sắp xếp cho 3 học sinh tên Trang đứng cạnh nhau và 2 học sinh tên Huy đứng cạnh nhau là \(n\left( A \right) = 32!.3!.2!\)
Xác suất cần tìm là \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \dfrac{{32!.3!.2!}}{{35!}} = \dfrac{2}{{6545}}\)
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho \({\log _2}b = 4,\,\;{\log _2}c = - 4;\) khi đó \({\log _2}({b^2}c)\) bằng
Tích các nghiệm thực của phương trình \(\log _2^2x + \sqrt {3 - {{\log }_2}x} = 3\) bằng
Trong không gian\(Oxyz,\) cho \(\vec u = 3\vec i - 2\vec j + 2\vec k\). Tọa độ của \(\vec u\) là
Cho hàm số \(y = f(x)\) có bảng biến thiên như hình bên. Số nghiệm của phương trình \(3f(x) - 2 = 0\) là
Cho \(\int\limits_{ - 1}^4 {x\ln \left( {x + 2} \right){\rm{d}}x} = a\ln 6 + \dfrac{5}{b}\) với \(a,b\) là các số nguyên dương. Giá trị \(2a + 3b\) bằng
Họ các nguyên hàm \(F(x)\) của hàm số \(f(x) = 3\sin x + \dfrac{2}{x} - {e^x}\) là
Mặt phẳng \(\left( P \right):2x - y + 3z - 1 = 0\) có một vectơ pháp tuyến là
Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương \(x,y,z\) thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1.\) Giá trị của \(a + b\) bằng
Cho hàm số \(f(x)\) thỏa mãn \(f\left( x \right) + 2\sqrt x f'\left( x \right) = 3x{e^{ - \sqrt x }},\forall x \in \left[ {0; + \infty } \right).\) Giá trị \(f(1)\) bằng
Tập xác định của hàm số \(y = {\left( {{3^x} - 9} \right)^{ - 2}}\) là
Cho hai điểm \(A( - 1;0;1),B( - 2;1;1).\) Phương trình mặt phẳng trung trực của đoạn \(AB\) là
Cho hàm số \(y = {\log _a}x,\,\,\,0 < a \ne 1\). Khẳng định nào sau đây đúng?
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\) như hình vẽ. Số giao điểm của \(\left( C \right)\) và đường thẳng \(y = 3\) là:
Cho hàm số \(y = f(x)\) có đạo hàm liên tục trên \(\mathbb{R},\) hàm số \(y = f'(x)\) có đồ thị như hình vẽ. Số điểm cực trị của hàm số \(y = f(1 - x)\) là
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau: Mệnh đề nào dưới đây sai?


