Câu hỏi Đáp án 3 năm trước 63

Giả sử \(a,b\) là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương \(x,y,z\) thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1.\) Giá trị của \(a + b\) bằng 

A. \( - \dfrac{{29}}{2}.\)     

B. \(\dfrac{{31}}{2}.\)         

C. \( - \dfrac{{31}}{2}.\)        

D. \(\dfrac{{29}}{2}.\) 

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Ta có: \(\log \left( {x + y} \right) = z \Leftrightarrow x + y = {10^z}\) ;

\(\log \left( {{x^2} + {y^2}} \right) = z + 1 \Leftrightarrow {x^2} + {y^2} = {10^{z + 1}} = {10^z}.10 = 10\left( {x + y} \right)\)

\( \Rightarrow {\left( {x + y} \right)^2} - 2xy = 10\left( {x + y} \right) \Rightarrow xy = \dfrac{{{{\left( {x + y} \right)}^2} - 10\left( {x + y} \right)}}{2}\)

Do đó \({x^3} + {y^3} = {\left( {x + y} \right)^3} - 3xy\left( {x + y} \right)\) \( = {\left( {x + y} \right)^3} - 3.\dfrac{{{{\left( {x + y} \right)}^2} - 10\left( {x + y} \right)}}{2}.\left( {x + y} \right)\)                      

\( =  - \dfrac{1}{2}{\left( {x + y} \right)^3} + 15{\left( {x + y} \right)^2} =  - \dfrac{1}{2}{.10^{3z}} + {15.10^{2z}}\).

Suy ra \(a =  - \dfrac{1}{2},b = 15 \Rightarrow a + b = \dfrac{{29}}{2}\).

Chọn D.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho \({\log _2}b = 4,\,\;{\log _2}c =  - 4;\) khi đó \({\log _2}({b^2}c)\) bằng 

Xem lời giải » 3 năm trước 78
Câu 2: Trắc nghiệm

Tích các nghiệm thực của phương trình \(\log _2^2x + \sqrt {3 - {{\log }_2}x}  = 3\) bằng  

Xem lời giải » 3 năm trước 71
Câu 3: Trắc nghiệm

Trong không gian\(Oxyz,\) cho \(\vec u = 3\vec i - 2\vec j + 2\vec k\). Tọa độ của \(\vec u\) là  

Xem lời giải » 3 năm trước 71
Câu 4: Trắc nghiệm

Cho hàm số \(y = f(x)\) có bảng biến thiên như hình bên. Số nghiệm của phương trình \(3f(x) - 2 = 0\) là

Xem lời giải » 3 năm trước 69
Câu 5: Trắc nghiệm

Cho \(\int\limits_{ - 1}^4 {x\ln \left( {x + 2} \right){\rm{d}}x}  = a\ln 6 + \dfrac{5}{b}\) với \(a,b\) là các số nguyên dương. Giá trị \(2a + 3b\) bằng 

Xem lời giải » 3 năm trước 64
Câu 6: Trắc nghiệm

Họ các nguyên hàm \(F(x)\) của hàm số \(f(x) = 3\sin x + \dfrac{2}{x} - {e^x}\) là 

Xem lời giải » 3 năm trước 63
Câu 7: Trắc nghiệm

Cho hai điểm \(A( - 1;0;1),B( - 2;1;1).\) Phương trình mặt phẳng trung trực của đoạn \(AB\) là 

Xem lời giải » 3 năm trước 62
Câu 8: Trắc nghiệm

Mặt phẳng \(\left( P \right):2x - y + 3z - 1 = 0\) có một vectơ pháp tuyến là 

Xem lời giải » 3 năm trước 62
Câu 9: Trắc nghiệm

Tập xác định của hàm số \(y = {\left( {{3^x} - 9} \right)^{ - 2}}\) là 

Xem lời giải » 3 năm trước 62
Câu 10: Trắc nghiệm

Cho hàm số \(f(x)\) thỏa mãn \(f\left( x \right) + 2\sqrt x f'\left( x \right) = 3x{e^{ - \sqrt x }},\forall x \in \left[ {0; + \infty } \right).\) Giá trị \(f(1)\) bằng 

Xem lời giải » 3 năm trước 62
Câu 11: Trắc nghiệm

Cho hàm số \(y = {\log _a}x,\,\,\,0 < a \ne 1\). Khẳng định nào sau đây đúng? 

Xem lời giải » 3 năm trước 61
Câu 12: Trắc nghiệm

Cho hàm số \(y = f(x)\) có đạo hàm liên tục trên \(\mathbb{R},\) hàm số \(y = f'(x)\) có đồ thị như hình vẽ. Số điểm cực trị của hàm số \(y = f(1 - x)\) là

Xem lời giải » 3 năm trước 60
Câu 13: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(\left( C \right)\) như hình vẽ. Số giao điểm của \(\left( C \right)\) và đường thẳng \(y = 3\) là:

Xem lời giải » 3 năm trước 60
Câu 14: Trắc nghiệm

Cho hai điểm \(A(3; - 1;2)\) và \(B(5;3; - 2).\) Mặt cầu nhận đoạn \(AB\) làm đường kính có phương trình là 

Xem lời giải » 3 năm trước 60
Câu 15: Trắc nghiệm

Với \(k\) và \(n\) là hai số nguyên dương tùy ý thỏa mãn \(k \le n\). Mệnh đề nào dưới đây đúng? 

Xem lời giải » 3 năm trước 59

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »