Lời giải của giáo viên
ToanVN.com
Hình thoi không phải là hình đa diện.
Chọn đáp án A.
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị lớn nhất của hàm số \(y = 1 + \sqrt {4x - {x^2}} \) là:
Cho lăng trụ \(ABCD.A_1B_1C_1D_1\) , đáy là hình chữ nhật ,AB = a ,\(AD = a\sqrt 3 \). Hình chiếu vuông góc của \(A_1\) trên mp(ABCD) trùng với giao điểm của AC và BD. Góc giữa \((ADD_1A_1)\) và (ABCD) bằng \(60^o\) .Tính thể tích khối lăng trụ đã cho:
Cho hàm số y = f(x) xác định và liên tục trên \(( - \infty ;0),\,(0; + \infty )\) có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng ?
Cho hàm số \(y = {e^x}(\sin x - \cos x)\). Ta có y’ bằng:
Nghiệm của bất phương trình \({\log _2}({3^x} - 2) < 0\) là:
Giá trị lớn nhất của hàm số \(y = {x^4} - 2{x^2} + 1\) trên đoạn [0 ; 2] là:
Thể tích khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng 2a là:
Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z + 1 + i|\, \le 2\) là;
Cho biểu thức \({a^{{1 \over {\sqrt 3 }}}} > {a^{{1 \over {\sqrt 2 }}}}\,\,;\,\,\,{\log _b}{3 \over 4} < {\log _b}{4 \over 5}\) thì a và b thuộc:
Thể tích \(V\) của khối lập phương \(ABCD.A'B'C'D'\), biết \(AB = 2a\) là:
Cho số phức \(z = - r\left( {\cos \varphi + i\sin \varphi } \right)\). Tìm một acgumen của z ?
Rút gọn biểu thức \(P = {a^{{5 \over 3}}}:\sqrt a \,\,\,\,\,(a > 0)\) .
Tính tích phân \(\int\limits_a^{\dfrac{\pi }{2} - a} {{\sin }^2}x\,dx;\,\,\dfrac{\pi }{2} > a > 0 \)
Hình chóp đều S.ABC có cạnh đáy bằng \(a\) và cạnh bên bằng \(3a\). Thể tích hình chóp S.ABC là ?


