Hình chóp S.ABC có đáy ABC là tam giác vuông tại A với \(AB=a,\widehat{ACB}={{30}^{0}}\) và SA=SB=SD với D là trung điểm BC. Biết khoảng cách giữa hai đường thẳng SA và BC bằng \(\frac{3a}{4}.\) Tính cos góc giữa hai mặt phẳng \(\left( SAC \right)\) và \(\left( SBC \right)\).
A. \(\frac{{2\sqrt 5 }}{{11}}.\)
B. 3
C. \(\frac{{\sqrt {65} }}{{13}}.\)
D. \(\frac{{\sqrt 5 }}{{33}}.\)
Lời giải của giáo viên
ToanVN.com
.png)
Do tam giác ABC vuông tại A có D là trung điểm BC và \(\widehat{ACB}={{60}^{0}}\) nên tam giác ABD đều cạnh a và \(BC=2a,CA=a\sqrt{3}.\)
Dựng \(SH\bot \left( ABC \right)\) với \(H\in \left( ABC \right)\)
\(\Rightarrow H\) là tâm tam giác đều BAD do SA=SB=SD.
Gọi hình chiếu của H lên AB,AC thứ tự là E,F
Gọi M là trung điểm đoạn BD.
\(\Rightarrow AM=\sqrt{B{{A}^{2}}-B{{M}^{2}}}=\sqrt{{{a}^{2}}-\frac{{{a}^{2}}}{4}}=\frac{a\sqrt{3}}{2}.\)
\(\Rightarrow AH=\frac{2}{3}AM=\frac{a\sqrt{3}}{3}\) và \(HE=HM=\frac{AM}{3}=\frac{a\sqrt{3}}{6}.\)
Ta có: \(SH\bot BC,AM\bot BC\) nên \(BC\bot \left( SAM \right).\)
Kẻ \(MN\bot SA\left( N\in SA \right)\) thì MN là đường vuông góc chung của SA và BC hay \(MN=\frac{3a}{4}.\)
\(\Rightarrow NA=\sqrt{M{{A}^{2}}-M{{N}^{2}}}=\frac{a\sqrt{3}}{4}.\)
Trong tam giác SAM có MN,SH là hai đường cao nên AH.AM=AN.AS.
\(\Rightarrow AS=\frac{AH.AM}{AN}=\frac{2a\sqrt{3}}{3}\Rightarrow SH=\sqrt{S{{A}^{2}}-A{{H}^{2}}}=a.\)
Chọn hệ trục tọa độ với gốc tại A và các trục tọa độ như hình vẽ với tia Ox trùng với tia AB, tia Oy trùng với tia AC và tia Oz vuông góc với mặt phẳng \(\left( ABC \right)\) và có hướng theo \(\overrightarrow{HS}.\) Các đơn vị trên các trục bằng nhau và bằng a.
Khi đó: \(A\left( 0;0;0 \right),B\left( 1;0;0 \right),C\left( 0;\sqrt{3};0 \right)\).
Do \(HF=AE=\frac{a}{2},HE=HM=\frac{a\sqrt{3}}{6}\) và SH=a nên \(S\left( \frac{1}{2};\frac{\sqrt{3}}{6};1 \right).\)
Véc-tơ pháp tuyến của mặt phẳng \(\left( SAC \right)\) là
\(\overrightarrow{{{n}_{1}}}=\left[ \overrightarrow{AC},\overrightarrow{AS} \right]=\left( \sqrt{3};0;\frac{-\sqrt{3}}{2} \right)\)
Véc-tơ pháp tuyến của mặt phẳng \(\left( SBC \right)\) là
\(\overrightarrow{{{n}_{2}}}=\left[ \overrightarrow{BC},\overrightarrow{SC} \right]=\left( -\sqrt{3};-1;\frac{-\sqrt{3}}{3} \right).\)
Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( SAC \right)\) và \(\left( SBC \right),\) ta có:
\(\cos \alpha =\left| \cos \left( \overrightarrow{{{n}_{1}}};\overrightarrow{{{n}_{2}}} \right) \right|=\frac{\left| \overrightarrow{{{n}_{1}}}.\overrightarrow{{{n}_{2}}} \right|}{\left| \overrightarrow{{{n}_{1}}} \right|.\left| \overrightarrow{{{n}_{2}}} \right|}=\frac{\sqrt{65}}{13}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức \(z=a+bi\left( a,b\in \mathbb{R} \right)\) thỏa mãn phương trình \(\frac{\left( \left| z \right|-1 \right)\left( 1+iz \right)}{z-\frac{1}{z}}=i.\) Tính P=a+b.
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
.jpg.png)
Đường cong trong hình bên phải là đồ thị của hàm số nào dưới đây?
.jpg.png)
Giá trị nhỏ nhất của hàm số \(y=\frac{x-1}{x+1}\) trên đoạn \(\left[ 0;3 \right]\) là:
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại \(A,AC=a,\widehat{ACB}={{60}^{0}}.\) Đường chéo BC' của mặt bên \(\left( BCC'B' \right)\) tạo với mặt phẳng ACC'A' một góc bằng \({{30}^{0}}\). Tính thể tích khối lăng trụ theo a.
Giá trị của tích phân \(I=\int\limits_{0}^{1}{\frac{x}{x+1}dx}\) là
Tọa độ giao điểm của đồ thị các hàm số \(y=\frac{{{x}^{2}}-2x-3}{x-2}\) và y=x+1 là
Giá trị lớn nhất của hàm số \(y=4{{x}^{2}}+\frac{1}{x}-2\) trên đoạn \(\left[ -1;2 \right]\) bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}.\) Biết rằng đồ thị của hàm số \(y=f'\left( x \right)\) được cho bởi hình vẽ bên. Vậy khi đó hàm số \(y=g\left( x \right)=f\left( x \right)-\frac{{{x}^{2}}}{2}\) có bao nhiêu điểm cực đại?
.jpg.png)
Điểm M trong hình bên dưới là điểm biểu diễn của số phức
.jpg.png)
Mô-đun của số phức \(z=\left( 1+2i \right)\left( 2-i \right)\) là
Tìm phương trình đường tiệm cận ngang của đồ thị hàm số \(y=\frac{x-3}{3x-2}.\)
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=AA'=a,AC=2a. Khoảng cách từ điểm D đến mặt phẳng \(\left( ACD' \right)\) là
Tìm nghiệm của phương trình \({{\log }_{25}}\left( x+1 \right)=\frac{1}{2}.\)


