Câu hỏi Đáp án 3 năm trước 142

Gọi S là tập hợp tất cả các giá trị của tham số m để đường thẳng \(y=x+m-1\) cắt đồ thị hàm số \(y={{x}^{3}}+\left( m-3 \right){{x}^{2}}+x+1\) tại ba điểm phân biệt \(A\left( 1;{{y}_{A}} \right),\,\,B,\,\,C\) sao cho \(BC=2\sqrt{3}.\) Tổng bình phương tất cả các phần tử của tập hợp S là:

A. 64

B. 40

C. 32

D. 52

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Phương trình hoành độ giao điểm là:

\(\begin{array}{l}
{x^3} + \left( {m - 3} \right){x^2} + x + 1 = x + m - 1\\
 \Leftrightarrow {x^3} + \left( {m - 3} \right){x^2} - m + 2 = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
x = 1\\
{x^2} + \left( {m - 2} \right)x + m - 2 = 0
\end{array} \right.
\end{array}\)

Đường thẳng \(y=x+m-1\) cắt đồ thị hàm số \(y={{x}^{3}}+\left( m-3 \right){{x}^{2}}+x+1\) tại ba điểm phân biệt khi và chỉ khi phương trình \({{x}^{2}}+\left( m-2 \right)x+m-2=0\) có hai nghiệm phân biệt \({{x}_{B}},\,{{x}_{C}}\) khác 1.

\( \Leftrightarrow \left\{ \begin{array}{l}
2m - 3 \ne 0\\
{\left( {m - 2} \right)^2} - 4\left( {m - 2} \right) > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ne \frac{3}{2}\\
\left[ \begin{array}{l}
m < 2\\
m > 6
\end{array} \right.
\end{array} \right.\)

Áp dụng định lí Vi-et ta có: \(\left\{ \begin{array}{l}
{x_B} + {x_C} =  - m + 2\\
{x_B}{x_C} = m - 2
\end{array} \right.\)

Ta có:

\(\begin{array}{l}
BC = 2\sqrt 3 \\
 \Leftrightarrow \sqrt {{{\left( {{x_B} - {x_C}} \right)}^2} + {{\left( {{y_B} - {y_C}} \right)}^2}}  = 2\sqrt 3 \\
 \Leftrightarrow 2{\left( {{x_B} - {x_C}} \right)^2} = 12\\
 \Leftrightarrow {m^2} - 8m + 6 = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
m = 4 + \sqrt {10} \\
m = 4 - \sqrt {10} 
\end{array} \right.
\end{array}\)

Suy ra: \(S=\left\{ 4+\sqrt{10};4-\sqrt{10} \right\}\).

Vậy tổng bình phương các giá trị m của tập S là 52.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số y=f(x) có đạo hàm trên R và có đồ thị hàm số f’(x) như hình vẽ bên.

Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(g\left( x \right)=f\left( x \right)-mx\) có đúng hai điểm cực tiểu?

 

Xem lời giải » 3 năm trước 198
Câu 2: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem lời giải » 3 năm trước 174
Câu 3: Trắc nghiệm

Cho hình hộp chữ nhật \(ABCD.{A}'{B}'{C}'{D}'\) các đường chéo của các hình chữ nhật \(ABCD\,\,;\,AB{B}'{A}'\,;\,AD{D}'{A}'\) lần lượt là \(\sqrt{5}\,;\,\sqrt{10\,}\,;\sqrt{13}\). Thể tích khối hộp chữ nhật đã cho là

Xem lời giải » 3 năm trước 170
Câu 4: Trắc nghiệm

Cho hình chóp \(D.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\),\(DA\) vuông góc với mặt phẳng đáy. Biết \(AB=3a,BC=4a,AD=5a\). Bán kính mặt cầu ngoại tiếp hình chóp \(D.ABC\) bằng

Xem lời giải » 3 năm trước 169
Câu 5: Trắc nghiệm

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}
{\frac{{2{x^2} - 3x + 1}}{{x - 1}}{\rm{khi}}x \ne 1}\\
{{\rm{2}}a + {\rm{1 khi }}x = 1}
\end{array}} \right.\) Tìm giá trị của tham số a để hàm số \(f\left( x \right)\) liên tục tại \(x=1\).

Xem lời giải » 3 năm trước 165
Câu 6: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB=2a,\,\,AD=a\). Hình chiếu của S lên mặt phẳng đáy là trung điểm H của cạnh AB; góc tạo bởi cạnh SC và mặt phẳng đáy là \({{45}^{o}}.\) Thể tíchkhối chóp S.ABCD là

Xem lời giải » 3 năm trước 164
Câu 7: Trắc nghiệm

Cho hình trụ có thiết diện qua trục là một hình vuông, diện tích mỗi mặt đáy bằng \(9\pi \left( c{{m}^{\text{2}}} \right).\)

Tính diện tích xung quanh hình trụ đó.

Xem lời giải » 3 năm trước 163
Câu 8: Trắc nghiệm

Cho hình lăng trụ đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a và cạnh bên bằng 2a. Thể tích của khối lăng trụ đã cho là

Xem lời giải » 3 năm trước 163
Câu 9: Trắc nghiệm

Hàm số nào dưới đây có giá trị nhỏ nhất trên tập xác định?

Xem lời giải » 3 năm trước 163
Câu 10: Trắc nghiệm

Cho hình bát diện đều \(ABCDEF\) như hình vẽ. Tổng số cạnh và mặt của hình bát diện bằng bao nhiêu?

Xem lời giải » 3 năm trước 162
Câu 11: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có bảng xét dấu đạo hàm như sau

Hàm số \(y=f\left( 3-2x \right)\) nghịch biến trên khoảng nào dưới đây?

Xem lời giải » 3 năm trước 162
Câu 12: Trắc nghiệm

Cho \(a,\,\,b\) là hai số dương với \(a\ne 1\) thỏa mãn \({{\log }_{a}}b=3.\) Khi đó, giá trị \({{\log }_{b}}\left( \frac{{{a}^{2}}}{b} \right)\) bằng:

Xem lời giải » 3 năm trước 160
Câu 13: Trắc nghiệm

Bất phương trình \({{2}^{2x}}-{{18.2}^{x}}+32\ge 0\) có tập nghiệm là

Xem lời giải » 3 năm trước 160
Câu 14: Trắc nghiệm

Tập tất cả các giá trị của tham số a để hàm số \(y={{\left( a-2 \right)}^{x}}\) nghịch biến trên \(\mathbb{R}\) là:

Xem lời giải » 3 năm trước 160
Câu 15: Trắc nghiệm

Cho hình chóp đều \(S.ABC\) có góc giữa mặt bên và mặt đáy bằng \({{60}^{\text{o}}}\), G là hình chiếu vuông góc của S trên mặt phẳng \(\left( ABC \right)\). Khoảng cách từ G đến SA bằng \(\frac{a}{\sqrt{7}}.\) Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( SAC \right)\). Khi đó, \(\tan \frac{\alpha }{2}\) bằng

Xem lời giải » 3 năm trước 158

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »