Lời giải của giáo viên
ToanVN.com
Ta có:
Số cạnh: 12
Số mặt: 8
Suy ra tổng số cạnh và mặt của hình bát diện đều là: \(12+8=20\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y=f(x) có đạo hàm trên R và có đồ thị hàm số f’(x) như hình vẽ bên.
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(g\left( x \right)=f\left( x \right)-mx\) có đúng hai điểm cực tiểu?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hình hộp chữ nhật \(ABCD.{A}'{B}'{C}'{D}'\) các đường chéo của các hình chữ nhật \(ABCD\,\,;\,AB{B}'{A}'\,;\,AD{D}'{A}'\) lần lượt là \(\sqrt{5}\,;\,\sqrt{10\,}\,;\sqrt{13}\). Thể tích khối hộp chữ nhật đã cho là
Cho hình chóp \(D.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\),\(DA\) vuông góc với mặt phẳng đáy. Biết \(AB=3a,BC=4a,AD=5a\). Bán kính mặt cầu ngoại tiếp hình chóp \(D.ABC\) bằng
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}
{\frac{{2{x^2} - 3x + 1}}{{x - 1}}{\rm{khi}}x \ne 1}\\
{{\rm{2}}a + {\rm{1 khi }}x = 1}
\end{array}} \right.\) Tìm giá trị của tham số a để hàm số \(f\left( x \right)\) liên tục tại \(x=1\).
Cho hình trụ có thiết diện qua trục là một hình vuông, diện tích mỗi mặt đáy bằng \(9\pi \left( c{{m}^{\text{2}}} \right).\)
Tính diện tích xung quanh hình trụ đó.
Cho hình lăng trụ đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a và cạnh bên bằng 2a. Thể tích của khối lăng trụ đã cho là
Hàm số nào dưới đây có giá trị nhỏ nhất trên tập xác định?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB=2a,\,\,AD=a\). Hình chiếu của S lên mặt phẳng đáy là trung điểm H của cạnh AB; góc tạo bởi cạnh SC và mặt phẳng đáy là \({{45}^{o}}.\) Thể tíchkhối chóp S.ABCD là
Cho hàm số \(y=f\left( x \right)\) có bảng xét dấu đạo hàm như sau
Hàm số \(y=f\left( 3-2x \right)\) nghịch biến trên khoảng nào dưới đây?
Tập tất cả các giá trị của tham số a để hàm số \(y={{\left( a-2 \right)}^{x}}\) nghịch biến trên \(\mathbb{R}\) là:
Cho \(a,\,\,b\) là hai số dương với \(a\ne 1\) thỏa mãn \({{\log }_{a}}b=3.\) Khi đó, giá trị \({{\log }_{b}}\left( \frac{{{a}^{2}}}{b} \right)\) bằng:
Bất phương trình \({{2}^{2x}}-{{18.2}^{x}}+32\ge 0\) có tập nghiệm là
Cho hình chóp đều \(S.ABC\) có góc giữa mặt bên và mặt đáy bằng \({{60}^{\text{o}}}\), G là hình chiếu vuông góc của S trên mặt phẳng \(\left( ABC \right)\). Khoảng cách từ G đến SA bằng \(\frac{a}{\sqrt{7}}.\) Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( SAC \right)\). Khi đó, \(\tan \frac{\alpha }{2}\) bằng
Biết giới hạn \(\lim \left[ n\left( \sqrt{{{n}^{2}}+3}-\sqrt{{{n}^{2}}+2} \right) \right]=\frac{a}{b}\) với \(a,\,\,b\in \mathbb{N}\) và \(\frac{a}{b}\) là phân số tối giản. Khi đó, giá trị \(2a+b\) bằng


