Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi đồ thị hàm số: \(y={{x}^{2}}-4x+4\), trục tung và trục hoành. Xác định k để đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( 0;4 \right)\) có hệ số góc k chia \(\left( H \right)\) thành hai phần có diện tích bằng nhau.
A. k = -4
B. k = -8
C. k = -6
D. k = -2
Lời giải của giáo viên
ToanVN.com
Phương trình hoành độ giao điểm của đồ thị hàm số \(y={{x}^{2}}-4x+4\) và trục hoành là: \({{x}^{2}}-4x+4=0\Leftrightarrow x=2\).
Diện tích hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị hàm số: \(y={{x}^{2}}-4x+4\), trục tung và trục hoành là: \(S=\int\limits_{0}^{2}{\left| {{x}^{2}}-4x+4 \right|\text{d}x}=\int\limits_{0}^{2}{\left( {{x}^{2}}-4x+4 \right)\text{d}x} =\left. \left( \frac{{{x}^{3}}}{3}-2{{x}^{2}}+4x \right) \right|_{0}^{2}=\frac{8}{3}\)
Phương trình đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( 0;4 \right)\) có hệ số góc k có dạng: y=kx+4.
Gọi B là giao điểm của \(\left( d \right)\) và trục hoành. Khi đó \(B\left( \frac{-4}{k};0 \right)\).
Đường thẳng \(\left( d \right)\) chia \(\left( H \right)\) thành hai phần có diện tích bằng nhau khi \(B\in OI\) và \({{S}_{\Delta OAB}}=\frac{1}{2}S=\frac{4}{3}\).
\(\Leftrightarrow \left\{ \begin{array}{l} 0 < \frac{{ - 4}}{k} < 2\\ {S_{\Delta OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.4.\frac{{ - 4}}{k} = \frac{4}{3} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} k < - 2\\ k = - 6 \end{array} \right. \Leftrightarrow k = - 6\)
.jpg.png)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho đồ thị hàm số y = f(x) có dạng hình vẽ bên. Tính tổng tất cả giá trị nguyên của m để hàm số y = |f(x) -2m + 5| có 7 điểm cực trị.
.jpg.png)
Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên sau:
.png)
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
.jpg.png)
Tìm các khoảng đồng biến của hàm số \(y={{x}^{3}}+3{{x}^{2}}+1\).
Nguyên hàm của hàm số \(f\left( x \right)=\cos 6x\) là
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{1-x}{-x+2}\) có phương trình lần lượt là
Cho \(\int\limits_{0}^{\frac{\pi }{4}}{\frac{\sqrt{2+3\tan x}}{1+\cos 2x}dx=a\sqrt{5}+b\sqrt{2},\,\,}\) với \(a,\,\,b\in \mathbb{R}.\) Tính giá trị biểu thức A=a+b.
Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng \(\Delta :\frac{x-4}{1}=\frac{y+3}{2}=\frac{z-2}{-1}.\)
Cho hai số phức \({{z}_{1}}=3-i\) và \({{z}_{2}}=-1+i\). Phần ảo của số phức \({{z}_{1}}{{z}_{2}}\) bằng
Tổng bình phương các nghiệm của phương trình \({\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 7} \right) = 0\) bằng
Tập nghiệm của bất phương trình \({{\log }_{3}}\left( 2x-1 \right)<3\) là
Một khối lăng trụ có chiều cao bằng 2a và diện tích đáy bằng \(2{{a}^{2}}\). Tính thể tích khối lăng trụ
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu (S) có tâm \(I(\left( 1;-2;3 \right)\) và \(\left( S \right)\) đi qua điểm \(A\left( 3;0;2 \right)\).
Cho số phức \(z=a+bi\left( a,\,b\in \mathbb{R},\,a>0 \right)\) thỏa \(z.\bar{z}-12\left| z \right|+\left( z-\bar{z} \right)=13-10i\). Tính S=a+b.
Số giao điểm của đồ thị hàm số \(y=\frac{x+1}{x-1}\) và đường thẳng y=2 là


