Đường tròn giao tuyến của \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\) khi cắt bởi mặt phẳng (Oxy) có chu vi bằng:
A. \(\sqrt 7 \pi .\)
B. \(2\sqrt 7 \pi .\)
C. \(7\pi .\)
D. \(14\pi .\)
Lời giải của giáo viên
ToanVN.com
Mặt cầu \(\left( S \right)\) tâm \(I\left( {1;2;3} \right)\), bán kính \(R = 4\). Ta có : \(d\left( {I;\left( {Oxy} \right)} \right) = \left| {{z_I}} \right| = 3\).
Gọi \(r\) là bán kính đường tròn (C) giao tuyến của mặt cầu \(\left( S \right)\) và mặt phẳng (Oxy), ta suy ra :
\(r = \sqrt {{R^2} - {{\left[ {d\left( {I;\left( {Oxy} \right)} \right)} \right]}^2}} = \sqrt 7 \). Vậy chu vi (C) bằng : \(2\sqrt 7 \pi \).
Lựa chọn đáp án B.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\)là mặt phẳng song song với mặt phẳng \(\left( \beta \right):2x - 4y + 4z + 3 = 0\) và cách điểm \(A\left( {2; - 3;4} \right)\) một khoảng \(k = 3\). Phương trình của mặt phẳng \(\left( \alpha \right)\) là:
Cho măt cầu \(\left( S \right)\) tâm \(O\), có bán kính bằng \(r = 5{\rm{ cm}}\). Đường thẳng \(\Delta \) cắt mặt cầu \(\left( S \right)\) theo một dây cung\(AB = 6{\rm{ cm}}\). Khoảng cách từ \(O\) đến đường thẳng \(\Delta \) bằng
Cho \(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} \,dx\,,\,\,u = {x^2} - 1} \). Khẳng định nào dưới đây sai ?
Mặt cầu tiếp xúc với các cạnh của tứ diện đều \(ABCD\) cạnh \(a\) có bán kính là?
Giá trị cực đại của hàm số \(y = {x^3} - 12x - 1\).
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông tại \(A\) và \(D\) thỏa mãn \(SA \bot \left( {ABCD} \right)\) và \(AB = 2AD = 2CD = 2a = \sqrt 2 SA\). Thể tích khối chóp \(S.BCD\) là:
Hàm số \(y = {x^3} - 3{x^2} + 3x - 4\) có bao nhiêu cực trị ?
Mặt cầu \(\left( S \right)\) có thể tích \(36\pi {\rm{ c}}{{\rm{m}}^3}\). Diện tích của mặt cầu \(\left( S \right)\) bằng
Tỉ số thể tích của khối trụ nội tiếp và khối trụ ngoại tiếp hình lập phương có cạnh bằng \(a\) bằng
Cho \(c = {\log _{15}}3\). Khi đó giá trị của \({\log _{25}}15\) theo c là:
Cho hàm số y = f(x) có bảng biến thiên cho bởi bảng sau:
Kết luận nào sau đây sai?
Cho \(\int\limits_1^4 {f(x)\,dx = 9} \). Tính tích phân \(I = \int\limits_0^1 {f(3x + 1)\,dx} \) .
Mô đun của số phức z thỏa mãn \(\overline z = 8 - 6i\) là:
Nếu n chẵn thì điều kiện để \(\root n \of b \) có nghĩa là:


