Lời giải của giáo viên
ToanVN.com
\(y = {x^3} - 3{x^2} + 1\)
\(TXD:D = R\)
\(\begin{array}{l}y' = 3{x^2} - 6x\\y' = 0 \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)
Từ BBT ta có đồ thị hàm số \(y = {x^3} - 3{x^2} + 1\) cắt đường thẳng \(y = m\) tại 3 điểm phân biệt
\( \Rightarrow - 3 < m < 1\)
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số y = sinx là một nguyên hàm của hàm số nào sau đây ?
Phép đối xứng qua mặt phẳng biến một điểm thuộc mặt phẳng đó thành:
Cho hàm số f(x) có đạo hàm trên R. Nếu hàm số f(x) đồng biến trên R thì
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt {2 - x} ,\,y = x\) xung quanh trục Ox được tính theo công thức nào sau đây :
Tìm \(I = \int {\left( {2{x^2} - \dfrac{1}{{\sqrt[3]{x}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)\,dx} \) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\).
Xét f(x) là một hàm số liên tục trê đoạn [a ; b], ( với a < b) và F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a ; b]. Mệnh đề nào dưới đây đúng ?
Diện tích hình phẳng giới hạn bởi \(y = \left( {e + 1} \right)x\,,\,\,y = \left( {{e^x} + 1} \right)x\) là:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng ?
Trong các kí hiệu sau, kí hiệu nào không phải của khối đa diện đều?
Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\), điểm \(A\left( {0;0;2} \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\) và cắt mặt cầu \(\left( S \right)\) theo thiết diện là hình tròn \(\left( C \right)\)có diện tích nhỏ nhất ?
Diện tích hình phẳng giới hạn bởi \(y = {x^2} - x + 3,\,\,y = 2x + 1\) là:


