Lời giải của giáo viên
ToanVN.com
Đường cong trong hình vẽ là đồ thị hàm số trùng phương \(f\left( x \right) = a{x^4} + b{x^2} + c\) (với a khác 0).
Từ đồ thị hàm số ta thấy
- Đồ thị hàm số có hướng đi xuống nên a < 0.
- Đồ thị hàm số có 3 cực trị nên ab < 0.
- Đồ thị hàm số đi qua gốc tọa độ nên c = 0.
Dựa vào 4 đáp án thì chỉ có hàm số \(f\left( x \right) = - {x^4} + 2{x^2}\) thỏa mãn.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình trụ có chiều cao bằng 8a. Biết hai điểm A, C lần lượt nằm trên hai đáy thỏa AC = 10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là
Trong không gian Oxyz phương trình nào dưới đây là phương trình của đường thẳng đi qua điểm A(2;3;0) và vuông góc với mặt phẳng \((P):x + 3y - z + 5 = 0?\)
Trong không gian Oxyz, cho điểm M(2;0;-1). Mệnh đề nào sau đây đúng?
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật,AB =2a, AD = a cạnh bên SA vuông góc với đáy, SA=3a.Thể tích của khối chóp S.ABCD là
Cho hàm số \(y = {x^3} + mx + 2\) có đồ thị (Cm). Tìm tất cả các giá trị m để đồ thị (Cm) cắt trục hoành tại một điểm duy nhất.
Xét các số thực a và b thỏa mãn \({\log _2}\left( {{2^a} \cdot {{128}^b}} \right) = {\log _{2\sqrt 2 }}2\). Mệnh đề nào dưới đây là đúng?
Cho \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} = - 2\) và \(\int\limits_0^1 {g\left( x \right){\rm{d}}x} = 7\), khi đó \(\int\limits_0^1 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]{\rm{d}}x} \) bằng
Trong không gian Oxyz cho mặt phẳng \(\left( P \right):2x - y + 6 = 0\). Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
Cho hai số phức \({z_1} = 2 - 4i\) và \({z_2} = 1 - 3i.\) Phần ảo của số phức \({z_1} + i\overline {{z_2}} \) bằng
Cho điểm A(1;2;3) và đường thẳng \(d:\frac{{x + 1}}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{3} \cdot \) Viết phương trình đường thẳng \(\Delta\) đi qua A vuông góc và cắt d.
Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và \({a^{2x}} = {b^{3y}} = a{}^6{b^6}\). Biết giá trị nhỏ nhất của biểu thức P = 4xy + 2x - y có dạng \(m + n\sqrt {165} \) (với m, n là các số tự nhiên), tính S = m + n.
Trong không gian Oxyz cho mặt cầu \(\left( S \right):{\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\). Tâm của (S) có tọa độ là
Cho cấp số nhân (un) với u1 = 2 và u4 = 250. Công bội của cấp số cộng đã cho bằng
Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + bx + c\) có đồ thị như hình vẽ:
.png)
Số nghiệm nằm trong \(\left( {\frac{{ - \pi }}{2};3\pi } \right)\) của phương trình \(f\left( {\cos x + 1} \right) = \cos x + 1\) là
.png)


