Lời giải của giáo viên
ToanVN.com
Phương trình hoành độ giao điểm của hai đồ thị đã cho là:
\({x^2} - 4 = 2x - 4 \Leftrightarrow {x^2} - 2x = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 2
\end{array} \right.\)
Diện tích hình phẳng giới hạn bởi hai đồ thị đã cho là:
\(S = \int\limits_0^2 {\left| {\left( {{x^2} - 4} \right) - \left( {2x - 4} \right)} \right|{\rm{d}}x} = \int\limits_0^2 {\left| {{x^2} - 2x} \right|{\rm{d}}x} = \int\limits_0^2 {\left( {2x - {x^2}} \right){\rm{d}}x} = \left( {{x^2} - \frac{{{x^3}}}{3}} \right)\left| \begin{array}{l}
2\\
0
\end{array} \right. = \frac{4}{3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Với a, b là các số thực dương tùy ý và \(a\ne 1,\,\,{{\log }_{{{a}^{5}}}}b\) bằng
Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Ox có tọa độ là
Cho hai số phức \({{z}_{1}}=3-2i\) và \({{z}_{2}}=2+i.\) Số phức \({{z}_{1}}+{{z}_{2}}\) bằng
Trong không gian Oxyz, cho ba điểm A(3;0;0), B(0;1;0) và C(0;0;-2). Mặt phẳng (ABC) có phương trình là
Có bao nhiêu cách xếp 6 học sinh thành một hàng dọc?
Tập hợp tất cả các giá trị thực của m để hàm số \(y=\frac{x+4}{x+m}\) đồng biến trên khoảng \(\left( -\infty ;-7 \right)\) là
Cho hàm số f(x) có bảng biến thiên sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Xét các số thực không âm x và y thỏa mãn \(2x+y{{.4}^{x+y-1}}\ge 3.\) Giá trị nhỏ nhất của biểu thức \(P={{x}^{2}}+{{y}^{2}}+4x+6y\) bằng
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,\,\,{{x}^{2}}+{{y}^{2}}+{{\left( z+2 \right)}^{2}}=9.\) Bán kính của (S) bằng
Cho cấp số nhân \(\left( {{u}_{n}} \right)\) với \({{u}_{1}}=3\) và công bội \(q=2.\) Giá trị của \({{u}_{2}}\) bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Giá trị nhỏ nhất của hàm số \(f(x)={{x}^{3}}-24x\) trên đoạn [2;19] bằng
Trên mặt phẳng tọa độ, biết M(-3;1) là điểm biểu diễn số phức z. Phần thực của z bằng


