Lời giải của giáo viên
ToanVN.com
Chọn khoảng trên dòng x tương ứng với mũi tên đi lên và có trong phương án trả lời
CÂU HỎI CÙNG CHỦ ĐỀ
Với a, b là các số thực dương tùy ý và \(a\ne 1,\,\,{{\log }_{{{a}^{5}}}}b\) bằng
Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Ox có tọa độ là
Cho hai số phức \({{z}_{1}}=3-2i\) và \({{z}_{2}}=2+i.\) Số phức \({{z}_{1}}+{{z}_{2}}\) bằng
Trong không gian Oxyz, cho ba điểm A(3;0;0), B(0;1;0) và C(0;0;-2). Mặt phẳng (ABC) có phương trình là
Tập hợp tất cả các giá trị thực của m để hàm số \(y=\frac{x+4}{x+m}\) đồng biến trên khoảng \(\left( -\infty ;-7 \right)\) là
Có bao nhiêu cách xếp 6 học sinh thành một hàng dọc?
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,\,\,{{x}^{2}}+{{y}^{2}}+{{\left( z+2 \right)}^{2}}=9.\) Bán kính của (S) bằng
Xét các số thực không âm x và y thỏa mãn \(2x+y{{.4}^{x+y-1}}\ge 3.\) Giá trị nhỏ nhất của biểu thức \(P={{x}^{2}}+{{y}^{2}}+4x+6y\) bằng
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của CC’ (tham khảo hình bên). Khoảng cách từ M đến mặt phẳng (A’BC) bằng
Cho cấp số nhân \(\left( {{u}_{n}} \right)\) với \({{u}_{1}}=3\) và công bội \(q=2.\) Giá trị của \({{u}_{2}}\) bằng
Trên mặt phẳng tọa độ, biết M(-3;1) là điểm biểu diễn số phức z. Phần thực của z bằng
Giá trị nhỏ nhất của hàm số \(f(x)={{x}^{3}}-24x\) trên đoạn [2;19] bằng


