Lời giải của giáo viên
ToanVN.com
Phương trình hoành độ giao điểm \(2 - {x^2} = - x \)
\(\Leftrightarrow {x^2} - x - 2 = 0\)
\(\Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 1\end{array} \right.\)
Diện tích hình phẳng được xác định bởi công thức
\(S = \int\limits_{ - 1}^2 {\left( {\left( {2 - {x^2}} \right) + x} \right)\,dx} \)\(\, = \left( { - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + 2x} \right)\left| \begin{array}{l}^2\\_{ - 1}\end{array} \right.\)\(\, = \dfrac{{10}}{3} + \dfrac{7}{6} = \dfrac{9}{2}.\)
Chọn đáp án A.
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị lớn nhất của hàm số \(y = 1 + \sqrt {4x - {x^2}} \) là:
Cho lăng trụ \(ABCD.A_1B_1C_1D_1\) , đáy là hình chữ nhật ,AB = a ,\(AD = a\sqrt 3 \). Hình chiếu vuông góc của \(A_1\) trên mp(ABCD) trùng với giao điểm của AC và BD. Góc giữa \((ADD_1A_1)\) và (ABCD) bằng \(60^o\) .Tính thể tích khối lăng trụ đã cho:
Cho hàm số y = f(x) xác định và liên tục trên \(( - \infty ;0),\,(0; + \infty )\) có bảng biến thiên như sau:
Mệnh đề nào sau đây đúng ?
Cho hàm số \(y = {e^x}(\sin x - \cos x)\). Ta có y’ bằng:
Nghiệm của bất phương trình \({\log _2}({3^x} - 2) < 0\) là:
Giá trị lớn nhất của hàm số \(y = {x^4} - 2{x^2} + 1\) trên đoạn [0 ; 2] là:
Thể tích khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng 2a là:
Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z + 1 + i|\, \le 2\) là;
Cho biểu thức \({a^{{1 \over {\sqrt 3 }}}} > {a^{{1 \over {\sqrt 2 }}}}\,\,;\,\,\,{\log _b}{3 \over 4} < {\log _b}{4 \over 5}\) thì a và b thuộc:
Rút gọn biểu thức \(P = {a^{{5 \over 3}}}:\sqrt a \,\,\,\,\,(a > 0)\) .
Thể tích \(V\) của khối lập phương \(ABCD.A'B'C'D'\), biết \(AB = 2a\) là:
Tính tích phân \(\int\limits_a^{\dfrac{\pi }{2} - a} {{\sin }^2}x\,dx;\,\,\dfrac{\pi }{2} > a > 0 \)
Cho số phức \(z = - r\left( {\cos \varphi + i\sin \varphi } \right)\). Tìm một acgumen của z ?
Tìm số giao điểm của đồ thị hàm số \(y = x + {2 \over {x - 1}}\) và đường thẳng y = 2x.


