Đề thi THPT QG 2019 có 5 câu vận dụng cao, mỗi câu có 4 phương án lựa chọn A, B, C, D trong đó 5 câu đều có một phương án đúng là A. Một thí sinh chọn ngẫu nhiên một phương án ở mỗi câu. Tính xác suất để học sinh đó không đúng câu nào.
A. \(\frac{5}{{{4^5}}}.\)
B. \(\frac{20}{{{4^5}}}.\)
C. \(\frac{1024}{{{4^5}}}.\)
D. \(\frac{243}{{{4^5}}}.\)
Lời giải của giáo viên
ToanVN.com
Mỗi câu hỏi có 4 phương án trả lời nên số cách chọn phương án trả lời cho 5 câu hỏi vận dụng cao là \(n\left( \Omega \right) = 4.4.4.4.4 = {4^5}.\)
Vì mỗi câu hỏi có 3 phương án trả lời sai nên số cách chọn để học sinh đó trả lời sai cả 5 câu hỏi vận dụng cao là \(n\left( A \right) = 3.3.3.3.3 = 243\)
Xác suất cần tìm là \(P(A) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{243}}{{{4^5}}}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Số mặt phẳng đối xứng của hình chóp đều S.ABCD là :
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ:
Số nghiệm của phương trình \(f(x)=-1\) là?
Cho tập \(A = \left\{ {0;1;2;3;4;5;7;9} \right\}.\) hỏi có bao nhiêu số tự nhiên 8 chữ số khác nhau lập từ A, biết các chữ số chãn không đứng cạnh nhau.
Cho tứ giác ABCD. Có bao nhiêu vector (khác \(\overrightarrow 0 \)) có điểm đầu và điểm cuối là các đỉnh của tứ giác.
Cho hàm số \(y = \frac{{ - x + 2}}{{x - 1}}\) có đồ thị (C) và điểm \(A\left( {a;1} \right).\) Biết \(a = \frac{m}{n}\) (với mọi \(m,n \in N\) và \(\frac{m}{n}\) tối giản) là giá
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, cạnh bên bằng 3a. Tính thể tích của khối chóp đã cho?
Cho hàm số \(y=f(x)\) liên tục trên R có đồ thị như hình vẽ:
.jpg)
Có bao nhiêu giá trị của n để phương trình \(f\left( {16{{\cos }^2}x + 6\sin 2x - 8} \right) = f\left( {n\left( {n + 1} \right)} \right)\) có nghiệm \(x \in R?\)
Số tập con của tập \(M = \left\{ {1;2;3} \right\}\) là:
\(\lim \left( {\frac{1}{{{n^2}}} + \frac{2}{{{n^2}}} + \frac{3}{{{n^2}}} + ... + \frac{n}{{{n^2}}}} \right)\) bằng
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x) = x{({x^2} + 2x)^3}({x^2} - \sqrt 2 ),\forall x \in R.\) Số điểm cực trị của hàm số là:
Nếu \(\sin x + \cos x = \frac{1}{2}\) thì \(sin 2x\)bằng
Cho hàm số \(y=f(x)\) có bảng biến thiên
Số tiệm cận đứng của đồ thị hàm số \(y = \frac{{2018}}{{f(x)}}\) là:
Dãy số \(\left( {{u_n}} \right)_{n = 1}^{ + \infty }\) là cấp số cộng, công sai d. Tổng \({S_{100}} = {u_1} + {u_2} + ... + {u_{100}},{u_1} \ne 0\) là
Cho hàm số \(y = \frac{1}{x}.\) Đạo hàm cấp hai của hàm số là:
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:
Hàm số \(y=f(x)\) đồng biến trên khoảng nào dưới đây?


