Lời giải của giáo viên
ToanVN.com
Tập xác định: \(D=\mathbb{R}.\)
Ta có đạo hàm của \(\left( \left| f\left( x \right) \right| \right)'=\left( \sqrt{{{f}^{2}}\left( x \right)} \right)'=\frac{2f\left( x \right).f'\left( x \right)}{2\sqrt{{{f}^{2}}\left( x \right)}}=\frac{f\left( x \right).f'\left( x \right)}{\left| f\left( x \right) \right|},\) suy ra
Đạo hàm \(y'=\frac{\left( 12{{x}^{3}}-12{{x}^{2}}-24x \right)\left( 3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+m \right)}{\left| 3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+m \right|}\), từ đây ta có
Xét phương trình
\(\left( 12{{x}^{3}}-12{{x}^{2}}-24x \right)\left( 3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}+m \right)=0\)
\( \Leftrightarrow \left[ \begin{array}{l} 12{x^3} - 12{x^2} - 24x = 0\\ 3{x^4} - 4{x^3} - 12{x^2} + m = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - 1\\ x = 2\\ 3{x^4} - 4{x^3} - 12{x^2} = - m\left( * \right) \end{array} \right.\)
Xét hàm số \(g\left( x \right)=3{{x}^{4}}-4{{x}^{3}}-12{{x}^{2}}\) trên \(\mathbb{R}\) và \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - 1\\ x = 2 \end{array} \right..\)
Bảng biến thiên của \(g\left( x \right)\) như sau:
.png)
Hàm số đã cho có 5 điểm cực trị khi và chỉ khi tổng số nghiệm bội lẻ của \(y'=0\) và số điểm tới hạn của \(y'\) là 5, do đó ta cần có các trường hợp sau
TH1: Phương trình (*) có hai nghiệm phân biệt khác -1; 0; 2 \( \Leftrightarrow \left[ \begin{array}{l} - m > 0\\ - 32 < - m < - 5 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} m < 0\\ 5 < m < 32 \end{array} \right.,\) trường hợp này có 26 số nguyên dương.
TH2: Phương trình (*) có 3 nghiệm trong đó có một nghiệm kép trùng với một trong các nghiệm \( - 1;0;2 \Leftrightarrow \left[ \begin{array}{l} - m = 0\\ - m = - 5 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} m = 0\\ m = 5 \end{array} \right.,\) trường hợp này có một số nguyên dương.
Vậy có tất cả là 27 số nguyên dương thỏa mãn bài toán
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}+1.\) Khẳng định nào sau đây đúng?
Tìm tất cả các giá trị thực của tham số m để hàm số \(y={{x}^{3}}+{{x}^{2}}+mx+1\) đồng biến trên \(\left( -\infty ;+\infty \right).\)
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)={{x}^{2}}\left( x-9 \right){{\left( x-4 \right)}^{2}}.\) Khi đó hàm số \(y=f\left( {{x}^{2}} \right)\) nghịch biến trên khoảng nào?
Cho hình chóp tam giác \(S.ABC\) với \(SA,SB,SC\) đôi một vuông góc và \(SA=SB=SC=a.\) Tính thể tích của khối chóp \(S.ABC.\)
Cho hàm số \(y=f\left( x \right)\) có đồ thị \(f'\left( x \right)\) như hình vẽ
.jpg.png)
Hàm số \(y=f\left( 1-x \right)+\frac{{{x}^{2}}}{2}-x\) nghịch biến trên khoảng
Cho hàm số \(y={{x}^{3}}-3x\) có đồ thị như hình vẽ bên. Phương trình \(\left| {{x}^{3}}-3x \right|={{m}^{2}}+m\) có 6 nghiệm phân biệt khi và chỉ khi:
.jpg.png)
Tìm giá trị nhỏ nhất \(m\) của hàm số: \(y={{x}^{2}}+\frac{2}{x}\) trên đoạn \(\left[ \frac{1}{2};2 \right].\)
Tập xác định của hàm số \({{\left( {{x}^{2}}-3x+2 \right)}^{\pi }}\) là
Giải phương trình \({{\log }_{3}}\left( 2x-1 \right)=1\)
Số cách chọn 5 học sinh trong một lớp có 25 học sinh nam và 16 học sinh nữ là
Tìm tất cả giá trị của tham số m để phương trình \({{x}^{3}}-3{{x}^{2}}-{{m}^{3}}+3{{m}^{2}}=0\) có ba nghiệm phân biệt?
Tìm tất cả các giá trị thực của tham số a để biểu thức \(B={{\log }_{3}}\left( 2-a \right)\) có nghĩa
Phương trình \({{\left( \frac{1}{3} \right)}^{{{x}^{2}}-2x-3}}={{3}^{x+1}}\) có bao nhiêu nghiệm?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
.png)
Mệnh đề nào dưới đây đúng?
Tập xác định của phương trình \(\sqrt{x-1}+\sqrt{x-2}=\sqrt{x-3}\) là


