Có bao nhiêu giá trị nguyên của tham số \(m\in \left[ -10;10 \right]\) để bất phương trình sau nghiệm đúng \(\forall x\in \mathbb{R}:{{\left( 6+2\sqrt{7} \right)}^{x}}+\left( 2-m \right){{\left( 3-\sqrt{7} \right)}^{x}}-\left( m+1 \right){{2}^{x}}\ge 0\)?
A. 10
B. 9
C. 12
D. 11
Lời giải của giáo viên
ToanVN.com
Chia cả 2 vế của bất phương trình cho \({{2}^{x}}>0\) ta được: \({{\left( 3+\sqrt{7} \right)}^{x}}+\left( 2-m \right){{\left( \frac{3-\sqrt{7}}{2} \right)}^{x}}-\left( m+1 \right)\ge 0\)
Nhận xét: \({{\left( 3+\sqrt{7} \right)}^{x}}.{{\left( \frac{3-\sqrt{7}}{2} \right)}^{x}}=1\), do đó khi ta đặt \(t={{\left( 3+\sqrt{7} \right)}^{x}}\left( t>0 \right)\Rightarrow {{\left( \frac{3-\sqrt{7}}{2} \right)}^{x}}=\frac{1}{t}\).
Phương trình trở thành: \(t+\left( 2-m \right)\frac{1}{t}-\left( m+1 \right)\ge 0\Leftrightarrow {{t}^{2}}-\left( m+1 \right)t+2-m\ge 0\)
\(\Leftrightarrow {{t}^{2}}-t+2\ge m\left( t+1 \right)\Leftrightarrow m\le \frac{{{t}^{2}}-t+2}{t+1}=f\left( t \right)\text{ }\forall t>0\Leftrightarrow m\le \underset{\left( 0;+\infty \right)}{\mathop{\min }}\,f\left( t \right)\).
Xét hàm số \(f\left( t \right)=\frac{{{t}^{2}}-t+2}{t+1}\left( t>0 \right)\) ta có: \(f'\left( t \right)=\frac{\left( 2t-1 \right)\left( t+1 \right)-{{t}^{2}}+t-2}{{{\left( t+1 \right)}^{2}}}=\frac{{{t}^{2}}+2t-3}{{{\left( t+1 \right)}^{2}}}=0\Leftrightarrow \left[ \begin{align} & t=1 \\ & t=-3 \\ \end{align} \right.\)
BBT
Từ BBT \(\Rightarrow m\le 1\).
Kết hợp điều kiện đề bài \(\Rightarrow \left\{ \begin{align} & m\in \mathbb{R} \\ & m\in \left[ -10;1 \right] \\ \end{align} \right.\Rightarrow \) có 12 giá trị của m thỏa mãn yêu cầu bài toán.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( 1;0;0 \right),B\left( 0;2;0 \right),C\left( 0;0;3 \right)\). Thể tích tứ diện OABC bằng:
Tính \(\lim \frac{{\sqrt {4{n^2} + 1} - \sqrt {n + 2} }}{{2n - 3}}\) bằng:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y=x-\sqrt{4-{{x}^{2}}}\). Khi đó M-m bằng:
Cho \(\int\limits_{1}^{2}{f\left( x \right)dx}=2\). Tính \(\int\limits_{1}^{4}{\frac{f\left( \sqrt{x} \right)}{\sqrt{x}}dx}\) bằng:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 0;-2;-1 \right),B\left( -2;-4;3 \right), C\left( 1;3;-1 \right)\). Tìm điểm \(M\in \left( Oxy \right)\) sao cho \(\left| \overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC} \right|\) đạt giá trị nhỏ nhất.
Tìm tập nghiệm của bất phương trình \({\log _{\frac{2}{5}}}\left( {x - 4} \right) + 1 > 0\)
Tính khoảng cách giữa các tiếp tuyến của đồ thị hàm \(f\left( x \right)={{x}^{3}}-3x+1\) (C) tại cực trị của \(\left( C \right)\)
Cho \(f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ -1;1 \right]\) và \(\int\limits_{-1}^{1}{f\left( x \right)dx}=4\). Kết quả \(I=\int\limits_{-1}^{1}{\frac{f\left( x \right)}{1+{{e}^{x}}}dx}\) bằng:
Cho mặt phẳng (P) đi qua các điểm \(A\left( { - 2;0;0} \right),B\left( {0;3;0} \right),C\left( {0;0; - 3} \right)\). Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau:
Gọi l, h, r lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của hình nón. Diện tích xung quanh \({{S}_{xq}}\) của hình nón là:
Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {5^{2x}}\)?
Trong khai triển nhị thức \({{\left( a+2 \right)}^{n+6}}\) có tất cả 17 số hạng. Khi đó giá trị n bằng:
Có bao nhiêu số tự nhiên có bốn chữ số khác nhau được tạo thành từ các chữ số của tập \(X = \left\{ {1;3;5;8;9} \right\}\).


