Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 0;-2;-1 \right),B\left( -2;-4;3 \right), C\left( 1;3;-1 \right)\). Tìm điểm \(M\in \left( Oxy \right)\) sao cho \(\left| \overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC} \right|\) đạt giá trị nhỏ nhất.
A. \(\left( {\frac{1}{5};\frac{3}{5};0} \right)\)
B. \(\left( { - \frac{1}{5};\frac{3}{5};0} \right)\)
C. \(\left( {\frac{1}{5}; - \frac{3}{5};0} \right)\)
D. \(\left( {\frac{3}{4};\frac{4}{5};0} \right)\)
Lời giải của giáo viên
ToanVN.com
Gọi I(a;b;c) thỏa mãn \(\overrightarrow {IA} + \overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \).
Ta có: \(\left\{ \begin{array}{l} \overrightarrow {IA} = \left( { - a; - 2 - b; - 1 - c} \right)\\ \overrightarrow {IB} = \left( { - 2 - a; - 4 - b;3 - c} \right)\\ \overrightarrow {IC} = \left( {1 - a;3 - b; - 1 - c} \right) \end{array} \right. \Rightarrow \overrightarrow {IA} + \overrightarrow {IB} + 3\overrightarrow {IC} = \left( { - 5a + 1; - 5b + 3; - 5c + 1} \right)\).
\(\overrightarrow {IA} + \overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \Leftrightarrow \left\{ \begin{array}{l} a = \frac{1}{5}\\ b = \frac{3}{5}\\ c = \frac{1}{5} \end{array} \right. \Rightarrow I\left( {\frac{1}{5};\frac{3}{5};\frac{1}{5}} \right)\).
Khi đó ta có \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + 3\overrightarrow {MC} } \right| = \left| {\overrightarrow {MI} + \overrightarrow {IA} + \overrightarrow {MI} + \overrightarrow {IB} + 3\overrightarrow {MI} + 3\overrightarrow {IC} } \right| = \left| {5\overrightarrow {MI} } \right| = 5MI\)
Khi đó \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + 3\overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất \( \Leftrightarrow M{I_{\min }} \Leftrightarrow M\) là hình chiếu của I trên (Oxy) \( \Rightarrow M\left( {\frac{1}{5};\frac{3}{5};0} \right)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( 1;0;0 \right),B\left( 0;2;0 \right),C\left( 0;0;3 \right)\). Thể tích tứ diện OABC bằng:
Tính \(\lim \frac{{\sqrt {4{n^2} + 1} - \sqrt {n + 2} }}{{2n - 3}}\) bằng:
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y=x-\sqrt{4-{{x}^{2}}}\). Khi đó M-m bằng:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho \(\int\limits_{1}^{2}{f\left( x \right)dx}=2\). Tính \(\int\limits_{1}^{4}{\frac{f\left( \sqrt{x} \right)}{\sqrt{x}}dx}\) bằng:
Tìm tập nghiệm của bất phương trình \({\log _{\frac{2}{5}}}\left( {x - 4} \right) + 1 > 0\)
Cho \(f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ -1;1 \right]\) và \(\int\limits_{-1}^{1}{f\left( x \right)dx}=4\). Kết quả \(I=\int\limits_{-1}^{1}{\frac{f\left( x \right)}{1+{{e}^{x}}}dx}\) bằng:
Tính khoảng cách giữa các tiếp tuyến của đồ thị hàm \(f\left( x \right)={{x}^{3}}-3x+1\) (C) tại cực trị của \(\left( C \right)\)
Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là:
Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {5^{2x}}\)?
Có bao nhiêu số tự nhiên có bốn chữ số khác nhau được tạo thành từ các chữ số của tập \(X = \left\{ {1;3;5;8;9} \right\}\).
Cho mặt phẳng (P) đi qua các điểm \(A\left( { - 2;0;0} \right),B\left( {0;3;0} \right),C\left( {0;0; - 3} \right)\). Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau:
Gọi l, h, r lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của hình nón. Diện tích xung quanh \({{S}_{xq}}\) của hình nón là:
Trong khai triển nhị thức \({{\left( a+2 \right)}^{n+6}}\) có tất cả 17 số hạng. Khi đó giá trị n bằng:


