Câu hỏi Đáp án 3 năm trước 142

Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = {x^8} + \left( {m - 4} \right){x^5} - \left( {{m^2} - 16} \right){x^4} + 1\) đạt cực tiểu khi \(x = 0\)?

A. 8

Đáp án chính xác ✅

B. Vô số 

C.

D.

Lời giải của giáo viên

verified ToanVN.com

Có \(y' = 8{x^7} + 5\left( {m - 4} \right){x^4} - 4\left( {{m^2} - 16} \right){x^3}\)

Đặt \(g\left( x \right) = 8{x^4} + 5\left( {m - 4} \right)x - 4\left( {{m^2} - 16} \right)\) thì \(y' = {x^3}.g\left( x \right)\)

Theo định nghĩa, x = 0 là điểm cực tiểu của hàm số y ⇔ Tồn tại h > 0 sao cho

\(\left\{ \begin{array}{l}y'\left( x \right) < 0,\forall x \in \left( { - h;0} \right)\\y'\left( 0 \right) = 0\\y'\left( x \right) > 0,\forall x \in \left( {0;h} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) > 0,\forall x \in \left( { - h;0} \right)\\g\left( x \right) > 0,\forall x \in \left( {0;h} \right)\end{array} \right.\) (*)

Ta thấy hàm số g(x) liên tục trên R và \(g'\left( x \right) = 32{x^3} + 5\left( {m - 4} \right) = 0 \Leftrightarrow x = \alpha  = \dfrac{{5\left( {4 - m} \right)}}{{32}}\) nên g(x) đạt cực tiểu tại x = α

Do đó \(\left( * \right) \Leftrightarrow \left[ \begin{array}{l}g\left( 0 \right) > 0\\\left\{ \begin{array}{l}g\left( 0 \right) = 0\\\alpha  = 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 4\left( {{m^2} - 16} \right) > 0\\\left\{ \begin{array}{l} - 4\left( {{m^2} - 16} \right) = 0\\m = 4\end{array} \right.\end{array} \right. \Leftrightarrow  - 4 < m \le 4\)

Có 8 giá trị nguyên của m thỏa mãn.

Chọn A

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau, OA = OB = a và OC = 2a. Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng OM và AC bằng 

Xem lời giải » 3 năm trước 175
Câu 2: Trắc nghiệm

Cho hàm số \(y = \frac{{x - 2}}{{x + 2}}\) có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

Xem lời giải » 3 năm trước 174
Câu 3: Trắc nghiệm

Từ một  hộp chứa 9 quả cầu màu đỏ và 6 quả cầu màu xanh, lấy ngẫu nhiên đồng thời ba quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng

Xem lời giải » 3 năm trước 173
Câu 4: Trắc nghiệm

Cho hình chóp S.ABC có đáy là tam giác vuông tại C, \(AC =a\) ; \(BC =\sqrt 2 a\), SA vuông góc với mặt phẳng đáy và \(SA = a\). Góc giữa  đường thẳng SB và mặt phẳng đáy bằng

Xem lời giải » 3 năm trước 170
Câu 5: Trắc nghiệm

Số tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{\sqrt {x + 25}  - 5}}{{{x^2} + x}}\) là

Xem lời giải » 3 năm trước 170
Câu 6: Trắc nghiệm

Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(\sqrt 3 a\) , SA vuông góc với mặt phẳng đáy và \(SA = a\). Khoảng cách từ A đến mặt phẳng (SBC) bằng

Xem lời giải » 3 năm trước 169
Câu 7: Trắc nghiệm

Thể tích của khối trụ tròn xoay có bán kính đáy r và chiều cao h bằng 

Xem lời giải » 3 năm trước 169
Câu 8: Trắc nghiệm

Từ các chữ số \(1,2,3,4,5,6,7\) lập được bao nhiêu số tự nhiên gồm hai chữ số khác nhau?

Xem lời giải » 3 năm trước 168
Câu 9: Trắc nghiệm

Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

Xem lời giải » 3 năm trước 166
Câu 10: Trắc nghiệm

Trong không gian Oxyz, mặt phẳng \(\left( P \right):2x + 3y + z-1 = 0\) có một vectơ pháp tuyến là

Xem lời giải » 3 năm trước 163
Câu 11: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 1\) và điểm \(A\left( {2;3;4} \right)\). Xét các điểm M thuộc (S) sao cho đường thẳng AM tiếp xúc với (S), M luôn thuộc mặt phẳng có phương trình là:

Xem lời giải » 3 năm trước 160
Câu 12: Trắc nghiệm

Xét các số phức z thỏa mãn \(\left( {\overline z  + 2i} \right)\left( {z - 2} \right)\)  là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng

Xem lời giải » 3 năm trước 160
Câu 13: Trắc nghiệm

\(\int\limits_1^2 {\dfrac{{dx}}{{3x - 2}}} \) bằng

Xem lời giải » 3 năm trước 159
Câu 14: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1 ; 2 ; 3) và đi qua điểm A(5 ; -2 ; -1). Xét các điểm B, C, D thuộc (S) sao cho AB, AC, AD đôi một vuông góc với nhau. Thể tích của khối tứ diện ABCD có giá trị lớn nhất bằng

Xem lời giải » 3 năm trước 158
Câu 15: Trắc nghiệm

Cho a > 0, b > 0 thoả mãn \({\log _{4a + 5b + 1}}\left( {16{a^2} + {b^2} + 1} \right) + {\log _{8ab + 1}}\left( {4a + 5b + 1} \right) = 2\). Giá trị của a + 2b bằng

Xem lời giải » 3 năm trước 158

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »