Lời giải của giáo viên
ToanVN.com
Mỗi cách chọn một số tự nhiên có hai chữ số khác nhau là một chỉnh hợp chập 2 của 7 phần tử.
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau, OA = OB = a và OC = 2a. Gọi M là trung điểm của AB. Khoảng cách giữa hai đường thẳng OM và AC bằng
Cho hàm số \(y = \frac{{x - 2}}{{x + 2}}\) có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
Từ một hộp chứa 9 quả cầu màu đỏ và 6 quả cầu màu xanh, lấy ngẫu nhiên đồng thời ba quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng
Số tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{\sqrt {x + 25} - 5}}{{{x^2} + x}}\) là
Cho hình chóp S.ABC có đáy là tam giác vuông tại C, \(AC =a\) ; \(BC =\sqrt 2 a\), SA vuông góc với mặt phẳng đáy và \(SA = a\). Góc giữa đường thẳng SB và mặt phẳng đáy bằng
Thể tích của khối trụ tròn xoay có bán kính đáy r và chiều cao h bằng
Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(\sqrt 3 a\) , SA vuông góc với mặt phẳng đáy và \(SA = a\). Khoảng cách từ A đến mặt phẳng (SBC) bằng
Đường cong trong hình vẽ bên là đồ thị của hàm số nào dưới đây?
Trong không gian Oxyz, mặt phẳng \(\left( P \right):2x + 3y + z-1 = 0\) có một vectơ pháp tuyến là
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):\,{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 1\) và điểm \(A\left( {2;3;4} \right)\). Xét các điểm M thuộc (S) sao cho đường thẳng AM tiếp xúc với (S), M luôn thuộc mặt phẳng có phương trình là:
Xét các số phức z thỏa mãn \(\left( {\overline z + 2i} \right)\left( {z - 2} \right)\) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
\(\int\limits_1^2 {\dfrac{{dx}}{{3x - 2}}} \) bằng
Cho a > 0, b > 0 thoả mãn \({\log _{4a + 5b + 1}}\left( {16{a^2} + {b^2} + 1} \right) + {\log _{8ab + 1}}\left( {4a + 5b + 1} \right) = 2\). Giá trị của a + 2b bằng
Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng \(d:\dfrac{{x + 2}}{1} = \dfrac{{y - 1}}{1} = \dfrac{{z + 2}}{2}\) ?
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1 ; 2 ; 3) và đi qua điểm A(5 ; -2 ; -1). Xét các điểm B, C, D thuộc (S) sao cho AB, AC, AD đôi một vuông góc với nhau. Thể tích của khối tứ diện ABCD có giá trị lớn nhất bằng


