Lời giải của giáo viên
ToanVN.com
+ Ta có: \({{\log }_{3}}\left( 3x+3 \right)+x=2y+{{9}^{y}}\,\Leftrightarrow 1+\,{{\log }_{3}}\left( x+1 \right)\,+x=2y+{{9}^{y}}\,\,\left( 1 \right)\)
+ Đặt \(t={{\log }_{3}}\left( x+1 \right)\). Suy ra: \(x+1={{3}^{t}}\Leftrightarrow x={{3}^{t}}-1\)
Khi đó: \(\left( 1 \right)\Leftrightarrow t+{{3}^{t}}=2y+{{3}^{2y}}\,\left( 2 \right)\)
Xét hàm số: \(f\left( h \right)=h+{{3}^{h}}\), ta có: \({f}'\left( h \right)=1+{{3}^{h}}.\ln 3\,>0\,\forall h\in \mathbb{R}\) nên hàm số \(f\left( h \right)\) đồng biến trên \(\mathbb{R}\)
Do đó: \(\left( 2 \right)\Leftrightarrow f\left( t \right)=f\left( 2y \right)\Leftrightarrow t=2y\Leftrightarrow {{\log }_{3}}\left( x+1 \right)=2y\Leftrightarrow x+1={{3}^{2y}}\Leftrightarrow x+1={{9}^{y}}\)
+ Do \(0\le x\le 2020\) nên \(1\le x+1\le 2021\Leftrightarrow 1\le {{9}^{y}}\le 2021\Leftrightarrow 0\le y\le {{\log }_{9}}2021\approx 3,46\)
Do \(y\in \mathbb{Z}\) nên \(y\in \left\{ 0;\,1;\,2;\,3 \right\}\), với mỗi giá trị y cho ta 1 giá trị x thoả đề.
Vậy có 4 cặp số nguyên \(\left( x\,;\,y \right)\) thoả đề.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) liên tục trên R và thỏa mãn \(xf({{x}^{3}})+f(1-{{x}^{2}})=-{{x}^{10}}+{{x}^{6}}-2x,\forall x\in \mathbb{R}\). Khi đó \(\int\limits_{-1}^{0}{f(x)dx}\) bằng
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2; -2; 1) trên mặt phẳng (Oxy) có tọa độ là
Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng \(d:\frac{x+1}{-1}=\frac{y-2}{3}=\frac{z-1}{3}\)?
Trong không gian Oxyz , vecto nào dưới đây là một vecto chỉ phương của đường thẳng đi qua hai điểm M(2; 3; -1) và N(4; 5; 3)?
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thực của phương trình 3f(x) – 2 = 0 là
Trong không gian Oxyz, cho các vecto \(\overrightarrow{a}=(1;0;3)\) và \(\overrightarrow{b}=(-2;2;5)\). Tích vô hướng \(\overrightarrow{a}.(\overrightarrow{a}+\overrightarrow{b})\) bằng
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{5{{x}^{2}}-4x-1}{{{x}^{2}}-1}\) là
Cho hàm số \(y=a{{x}^{3}}+3x+d(a,d\in \mathbb{R})\) có đồ thị như hình. Mệnh đề nào dưới đây đúng?
Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(z={{(1+2i)}^{2}}\) là điểm nào dưới đây?
Cho hàm số f(x), bảng xát dấu của f’(x) như sau:
Số điểm cực trị của hàm số đã cho là
Cho hàm số y = f(x) có bằng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
Cho khối lập phương có cạnh bằng 6. Thể tích của khối lập phương đã cho bằng
Nếu \(\int\limits_{1}^{2}{f(x)}dx=-2\) và \(\int\limits_{2}^{3}{f(x)}dx=1\) thì \(\int\limits_{1}^{3}{f(x)}dx\) bằng
Cho khối lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi cạnh a, \(BD=\sqrt{3}a\) và AA’ = 4a (minh họa như hình bên). Thể tích của khối lăng trụ đã cho bằng


