Lời giải của giáo viên
ToanVN.com
Tập xác định: \(D=\mathbb{R}\backslash \left\{ -1;1 \right\}\).
Ta có: \(y=\frac{5{{x}^{2}}-4x-1}{{{x}^{2}}-1}=\frac{(x-1)(5x+1)}{(x-1)(x+1)}=\frac{5x+1}{x+1}\)
Suy ra: \(\underset{x\to +\,\infty }{\mathop{\lim }}\,y=\underset{x\to +\,\infty }{\mathop{\lim }}\,\frac{5x+1}{x+1}=5\)
\(\underset{x\to -\,\infty }{\mathop{\lim }}\,y=\underset{x\to -\,\infty }{\mathop{\lim }}\,\frac{5x+1}{x+1}=5\)
\(\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,y=\underset{x\to -{{1}^{+}}}{\mathop{\lim }}\,\frac{5x+1}{x+1}=-\infty \)
\(\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,y=\underset{x\to -{{1}^{-}}}{\mathop{\lim }}\,\frac{5x+1}{x+1}=+\infty \)
Vậy đồ thị hàm số có 1 tiệm cân đứng là \(x=-1\) và 1 tiệm cận ngang là \(y=5\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) liên tục trên R và thỏa mãn \(xf({{x}^{3}})+f(1-{{x}^{2}})=-{{x}^{10}}+{{x}^{6}}-2x,\forall x\in \mathbb{R}\). Khi đó \(\int\limits_{-1}^{0}{f(x)dx}\) bằng
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2; -2; 1) trên mặt phẳng (Oxy) có tọa độ là
Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng \(d:\frac{x+1}{-1}=\frac{y-2}{3}=\frac{z-1}{3}\)?
Trong không gian Oxyz , vecto nào dưới đây là một vecto chỉ phương của đường thẳng đi qua hai điểm M(2; 3; -1) và N(4; 5; 3)?
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thực của phương trình 3f(x) – 2 = 0 là
Trong không gian Oxyz, cho các vecto \(\overrightarrow{a}=(1;0;3)\) và \(\overrightarrow{b}=(-2;2;5)\). Tích vô hướng \(\overrightarrow{a}.(\overrightarrow{a}+\overrightarrow{b})\) bằng
Cho hàm số \(y=a{{x}^{3}}+3x+d(a,d\in \mathbb{R})\) có đồ thị như hình. Mệnh đề nào dưới đây đúng?
Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(z={{(1+2i)}^{2}}\) là điểm nào dưới đây?
Cho hàm số f(x), bảng xát dấu của f’(x) như sau:
Số điểm cực trị của hàm số đã cho là
Tập nghiệm của bất phương trình \({{5}^{x-1}}\ge {{5}^{{{x}^{2}}-x-9}}\) là?
Cho khối lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi cạnh a, \(BD=\sqrt{3}a\) và AA’ = 4a (minh họa như hình bên). Thể tích của khối lăng trụ đã cho bằng
Cho hàm số y = f(x) có bằng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
Cho khối lập phương có cạnh bằng 6. Thể tích của khối lập phương đã cho bằng
Nếu \(\int\limits_{1}^{2}{f(x)}dx=-2\) và \(\int\limits_{2}^{3}{f(x)}dx=1\) thì \(\int\limits_{1}^{3}{f(x)}dx\) bằng


