Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Gọi S là tích các chữ số được chọn. Xác suất để S>0 và chia hết cho 6 bằng
A. \(\frac{{23}}{{54}}\)
B. \(\frac{{49}}{{108}}\)
C. \(\frac{{13}}{{27}}\)
D. \(\frac{{55}}{{108}}\)
Lời giải của giáo viên
ToanVN.com
+) Số tự nhiên có ba chữ số khác nhau có dạng \(\overline{abc},\ \ a\ne 0\)
Số phần tử của không gian mẫu là \(n\left( \Omega\right)=9.9.8=648\).
+) Gọi A là biến cố: “Chọn được số có S>0 và S chia hết cho 6”.
Ta có: S=a.b.c>0 nên ba chữ số \(a,~b,~c\) khác 0.
Mặt khác S=a.b.c chia hết cho 6 nên xảy ra một trong các TH sau:
+) TH1: Trong 3 chữ số \(a,~b,~c\) có chữ số 6.
- Chọn vị trí cho chữ số 6: có 3 cách.
- Chọn 2 chữ số trong tập \(\left\{ 1;\ 2;\ 3;\ 4;\ 5;\ 7;\ 8;\ 9 \right\}\) và xếp vào 2 vị trí còn lại: có \(A_{8}^{2}\) cách.
\(\Rightarrow \) có \(3.A_{8}^{2}=168\).
+) TH2: Trong 3 chữ số a,b,c không có chữ số 6.
Khi đó để a.b.c chia hết cho 6 ta cần có ít nhất 1 chữ số chia hết cho 2 thuộc tập \(\left\{ 2;4;8 \right\}\) và ít nhất 1 chữ số chia hết cho 3 thuộc tập \(\left\{ 3;9 \right\}\). Có các khả năng sau:
- Trong 3 chữ số a,b,c có một chữ số chia hết cho 2, một chữ số chia hết cho 3 và một chữ số thuộc tập \(\left\{ 1;5;7 \right\}\): có \(C_{3}^{1}.C_{2}^{1}.C_{3}^{1}.3!=108\).
- Trong 3 chữ số a,b,c có 2 chữ số chia hết cho 2, một chữ số chia hết cho 3: có \(C_{3}^{2}.2.3!=36\).
- Trong 3 chữ số a,b,c có 1 chữ số chia hết cho 2 và 2 chữ số chia hết cho 3: có \(C_{3}^{1}.C_{2}^{2}.3!=18\).
Suy ra \(n\left( A \right)=168+108+36+18=330\)
Vậy \(P\left( A \right)=\frac{n\left( A \right)}{n\left( \Omega \right)}=\frac{330}{648}=\frac{55}{108}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức z=5-3i. Môđun của số phức \(\left( 1-2i \right)\left( \overline{z}-1 \right)\) bằng
Nếu \(\int\limits_{0}^{\frac{\pi }{3}}{\left[ \sin x-3f\left( x \right) \right]}\text{d}x=6\) thì \(\int\limits_{0}^{\frac{\pi }{3}}{f\left( x \right)}\text{d}x\) bằng
Trong không gian \(Oxyz\), điểm nào sau đây thuộc trục \(Oz\)?
Chọn ngẫu nhiên một số trong 18 số nguyên dương đầu tiên. Xác suất để chọn được số lẻ bằng
Cho hàm số \(f\left( x \right)\) thỏa mãn \(\int\limits_{1}^{2}{f\left( x \right)}\text{d}x=1\) và \(\int\limits_{1}^{4}{f\left( t \right)}\text{d}t=-3\). Tính tích phân \(I=\int\limits_{2}^{4}{f\left( u \right)}\text{d}u\).
Diện tích xung quanh của hình trụ có bán kính đáy R, chiều cao h là
Nghiệm của phương trình \(\ln \left( 7x \right)=7\) là
Tiệm cận ngang của đồ thị hàm số \(y=\dfrac{3x+2}{x-1}\) là đường thẳng
Cho tam giác ABC vuông tại A có \(AB=\sqrt{3}\) và AC=3. Thể tích V của khối nón nhận được khi quay tam giác ABC quanh cạnh AC là
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(xf\left( {{x}^{2}} \right)-f\left( 2x \right)=2{{x}^{3}}+2x,\,\,\,\forall x\in \mathbb{R}\). Tính giá trị \(I=\int\limits_{1}^{2}{f\left( x \right)\text{d}x}\).
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau:
Hàm số \(y=f\left( x \right)\) nghịch biến trên khoảng nào, trong các khoảng dưới đây?
Có bao nhiêu cách xếp 4 học sinh thành một hàng dọc?
Với m là tham số thực, ta có \(\int\limits_{1}^{2}{\text{(}2mx+1)\text{d}x}=4.\) Khi đó m thuộc tập hợp nào sau đây?
Cho khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{3}\). Tính thể tích khối lăng trụ đó theo a.
Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y={f}'\left( x \right)\) như hình bên. Đặt \(g\left( x \right)=2f\left( x \right)+{{x}^{2}}+3\). Khẳng định nào sau đây là đúng?


