Chọn khẳng định sai:
A. Đồ thị hàm số lẻ nhận điểm (0 ; 0) làm tâm đối xứng.
B. Tâm đối xứng của dồ thị hàm số luôn thuộc đồ thị hàm số đó.
C. Tâm đối xứng của đồ thị hàm số có thể không nằm trên đồ thị hàm số đó.
D. Đồ thị hàm số bậc ba có tâm đối xứng thuộc đồ thị hàm số.
Lời giải của giáo viên
ToanVN.com
Tâm đối xứng của đồ thị hàm số có thể không nằm trên đồ thị hàm số.
Chẳng hạn đồ thị hàm phân thức bậc nhất trên bậc nhất là giao của hai đường tiệm cận.
Do đó B sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian \(B\left( {\dfrac{1}{3}; - \dfrac{1}{3}; - \dfrac{1}{3}} \right)\), cho mặt cầu \(d(A,(P)) = 5 \ge d(B,(P)) = 1.\) có tâm \( \Rightarrow d(A,(P)) \ge d(M,(P)) \ge d(B,(P)).\) tiếp xúc với mặt phẳng \( \Rightarrow d{(M,(P))_{\min }} = 1 \Leftrightarrow M \equiv B.\). Mặt cầu \(Oxyz\) có bán kính \(2x - 2y - z + 9 = 0\) bằng:
Cho hình (H) giới hạn bởi các đường \(y = \sin x,y = 0,\,x = 0,\,x = \pi \). Thể tích vật thể tròn xoay sinh bởi (H) quay quanh trục Ox bằng :
Cho hàm số \(y = {1 \over 3}{x^3} + 2{x^2} + (m + 1)x + 5\). Tìm tất cả các giá trị của tham số m để hàm số đồng biến trên R.
Trong không gian \(BD\), cho mặt cầu \(\overrightarrow {A'X} = \left( {\dfrac{a}{2};\dfrac{a}{2}; - b} \right)\); và mặt phẳng \(\overrightarrow {MX} = \left( { - \dfrac{a}{2}; - \dfrac{a}{2}; - \dfrac{b}{2}} \right)\).
Trong các mệnh đề sau, mệnh đề nào đúng?
Viết phương trình tiếp tuyến cua đồ thị hàm số \(y = {x^{{1 \over 5}}}\) tại điểm có tung độ bằng 2.
Cho hình nón có tỉ lệ giữa bán kính đáy và đường sinh bằng \(\dfrac{1}{3}\). Hình cầu nội tiếp hình nón này có thể tích bằng V. Thể tích hình nón bằng.
Gọi \(\varphi \) là góc giữa hai vectơ \(\overrightarrow a = \left( {1;2;0} \right)\) và \(\overrightarrow b = \left( {2;0; - 1} \right)\), khi đó \(\cos \varphi \) bằng
Cho hai số thực a và b, với 0 < a< b < 1. Khẳng định nào sau đây đúng ?
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a,\(\widehat {BCD} = {120^0}\) và \(AA' = \dfrac{{7a}}{2}\). Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.
Mô đun của số phức z thỏa mãn \(\dfrac{{2 + i}}{{1 - i}}z = \dfrac{{ - 1 + 3i}}{{2 + i}}\) là:
Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\)trên \((0; + \infty )\).
Tích vô hướng của hai vectơ \(\overrightarrow a = \left( { - 2;2;5} \right),\,\overrightarrow b = \left( {0;1;2} \right)\) trong không gian bằng
Tìm tập nghiệm của bất phương trình \({7^x} \ge 10 - 3x\).
Cho A và B là các điểm biểu diễn các số phức \({z_1} = 1 + 2i\,,\,\,{z_2} = 1 - 2i\). Diện tích của tam giác OAB bằng:
Cho số phức \(z = - \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\). Khi đó số phức \({\left( {\overline z } \right)^2}\) bằng ;


