Câu hỏi Đáp án 3 năm trước 64

Cho \(\int\limits_{16}^{55} {\frac{{{\rm{d}}x}}{{x\sqrt {x + 9} }}}  = a\ln 2 + b\ln 5 + c\ln 11\) với a, b, c là các số hữu tỉ. Mệnh đề nào dưới đây đúng?

A. a - b =  - c

Đáp án chính xác ✅

B. a + b = c

C. a + b = 3c

D. a - b = -3c

Lời giải của giáo viên

verified ToanVN.com

Đặt \(t = \sqrt {x + 9}  \Rightarrow {t^2} = x + 9 \Rightarrow 2t{\rm{d}}t = {\rm{d}}x\).

Đổi cận:

x 16 55
t 5 8

\(\begin{array}{l}
\int\limits_{16}^{55} {\frac{{{\rm{d}}x}}{{x\sqrt {x + 9} }}}  = \int\limits_5^8 {\frac{{2t{\rm{d}}t}}{{\left( {{t^2} - 9} \right)t}}}  = 2\int\limits_5^8 {\frac{{{\rm{d}}t}}{{{t^2} - 9}}}  = \frac{1}{3}\left( {\int\limits_5^8 {\frac{{{\rm{d}}t}}{{t - 3}}}  - \int\limits_5^8 {\frac{{{\rm{d}}t}}{{t + 3}}} } \right)\\
 = \left. {\frac{1}{3}\left( {\ln \left| {x - 3} \right| - \ln \left| {x + 3} \right|} \right)} \right|_5^8 = \frac{2}{3}\ln 2 + \frac{1}{3}\ln 5 - \frac{1}{3}\ln 11
\end{array}\)

Vậy \(a = \frac{2}{3};b = \frac{1}{3};c =  - \frac{1}{3}\). Mệnh đề a - b = -c đúng.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 9\) và điểm A(2; 3;-1). Xét các điểm M thuộc (S) sao cho đường thẳng AM tiếp xúc với (S), M luôn thuộc mặt phẳng có phương trình 

Xem lời giải » 3 năm trước 91
Câu 2: Trắc nghiệm

Cho khối chóp có đáy hình vuông cạnh a và chiều cao bằng 2a. Thể tích cả khối chóp đã cho bằng

Xem lời giải » 3 năm trước 78
Câu 3: Trắc nghiệm

Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{x + 2}}{{x + 5m}}\) đồng biến trên khoảng \(\left( { - \infty ;\, - 10} \right)\)?

Xem lời giải » 3 năm trước 75
Câu 4: Trắc nghiệm

Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = {e^x},y = 0,x = 0,x = 2\). Mệnh đề nào dưới đây đúng?

Xem lời giải » 3 năm trước 74
Câu 5: Trắc nghiệm

Với a là số thực dương tùy ý, \(\ln \left( {5a} \right) - \ln \left( {3a} \right)\) bằng 

Xem lời giải » 3 năm trước 70
Câu 6: Trắc nghiệm

Trong không gian Oxyz,  mặt phẳng đi qua điểm A(2; -1; 2) và song song với mặt phẳng (P): 2x - y + 3z + 2 = 0 có phương trình là

Xem lời giải » 3 năm trước 69
Câu 7: Trắc nghiệm

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho phương trình \({16^x} - m{.4^{x + 1}} + 5{m^2} - 45 = 0\) có hai nghiệm phân biệt. Hỏi S có bao nhiêu phần tử?

Xem lời giải » 3 năm trước 68
Câu 8: Trắc nghiệm

Giá trị lớn nhất của hàm số \(y = {x^4} - 4{x^2} + 9\) trên đoạn [-2; 3] bằng:

Xem lời giải » 3 năm trước 67
Câu 9: Trắc nghiệm

Diện tích mặt cầu bán kính R bằng

Xem lời giải » 3 năm trước 67
Câu 10: Trắc nghiệm

Số phức -3 + 7i có phần ảo bằng 

Xem lời giải » 3 năm trước 66
Câu 11: Trắc nghiệm

\(\int\limits_1^2 {{e^{3x - 1}}{\rm{d}}x} \) bằng:

Xem lời giải » 3 năm trước 66
Câu 12: Trắc nghiệm

Cho hai hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx - \frac{1}{2}\) và \(g\left( x \right) = d{x^2} + ex + 1\) \(\left( {a,b,c,d,e \in R} \right)\). Biết rằng đồ thị của hàm số y = f(x) và y = g(x) cắt nhau tại ba điểm có hoành độ lần lượt là -3; -1; 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng

Xem lời giải » 3 năm trước 66
Câu 13: Trắc nghiệm

Đường cong trong hình vẽ bên là của hàm số nào dưới đây

Xem lời giải » 3 năm trước 66
Câu 14: Trắc nghiệm

Cho hình chóp S.ABC  có đáy là tam giác vuông đỉnh B, AB = a, SA vuông góc với mặt phẳng đáy và SA = 2a. Khoảng cách từ A đến mặt phẳng (SBC) bằng

Xem lời giải » 3 năm trước 65
Câu 15: Trắc nghiệm

Trong không gian Oxyz, cho mặt cầu (S) có tâm I(-2; 1; 2) và đi qua điểm A(1; -2; -1). Xét các điểm B, C, D thuộc (S) sao cho AB, AC, AD đôi một vuông góc với nhau. Thể tích của khối tứ diện ABCD có giá trị lớn nhất bằng

Xem lời giải » 3 năm trước 65

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »