Lời giải của giáo viên
ToanVN.com
Đặt \(t = {4^x}\), t > 0. Phương trình đã cho trở thành
\({t^2} - 4mt + 5{m^2} - 45 = 0\) (*).
Với mỗi nghiệm t > 0 của phương trình (*) sẽ tương ứng với duy nhất một nghiệm x của phương trình ban đầu. Do đó, yêu cầu bài toán tương đương phương trình (*) có hai nghiệm dương phân biệt. Khi đó
\(\left\{ \begin{array}{l}
\Delta ' > 0\\
S > 0\\
P > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
- {m^2} + 45 > 0\\
4m > 0\\
5{m^2} - 45 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
- 3\sqrt 5 < m < 3\sqrt 5 \\
m > 0\\
\left[ \begin{array}{l}
m < - 3\\
m > 3
\end{array} \right.
\end{array} \right. \Leftrightarrow 3 < m < 3\sqrt 5 \).
Do \(m \in Z\) nên \(m \in \left\{ {4;\,5;\,6} \right\}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 9\) và điểm A(2; 3;-1). Xét các điểm M thuộc (S) sao cho đường thẳng AM tiếp xúc với (S), M luôn thuộc mặt phẳng có phương trình
Cho khối chóp có đáy hình vuông cạnh a và chiều cao bằng 2a. Thể tích cả khối chóp đã cho bằng
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{x + 2}}{{x + 5m}}\) đồng biến trên khoảng \(\left( { - \infty ;\, - 10} \right)\)?
Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = {e^x},y = 0,x = 0,x = 2\). Mệnh đề nào dưới đây đúng?
Với a là số thực dương tùy ý, \(\ln \left( {5a} \right) - \ln \left( {3a} \right)\) bằng
Trong không gian Oxyz, mặt phẳng đi qua điểm A(2; -1; 2) và song song với mặt phẳng (P): 2x - y + 3z + 2 = 0 có phương trình là
Giá trị lớn nhất của hàm số \(y = {x^4} - 4{x^2} + 9\) trên đoạn [-2; 3] bằng:
Đường cong trong hình vẽ bên là của hàm số nào dưới đây
.png)
\(\int\limits_1^2 {{e^{3x - 1}}{\rm{d}}x} \) bằng:
Cho hình chóp S.ABC có đáy là tam giác vuông đỉnh B, AB = a, SA vuông góc với mặt phẳng đáy và SA = 2a. Khoảng cách từ A đến mặt phẳng (SBC) bằng
Cho hai hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx - \frac{1}{2}\) và \(g\left( x \right) = d{x^2} + ex + 1\) \(\left( {a,b,c,d,e \in R} \right)\). Biết rằng đồ thị của hàm số y = f(x) và y = g(x) cắt nhau tại ba điểm có hoành độ lần lượt là -3; -1; 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng
.png)
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d,\left( {a,\;b,\;c,\;d \in R} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là:
.png)
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(-2; 1; 2) và đi qua điểm A(1; -2; -1). Xét các điểm B, C, D thuộc (S) sao cho AB, AC, AD đôi một vuông góc với nhau. Thể tích của khối tứ diện ABCD có giá trị lớn nhất bằng


