Cho tứ diện SABC có trọng tâm G. Một mặt phẳng qua G cắt các tia SA, SB và SC theo thứ tự tại A’, B’ và C’. Đặt \(\frac{{SA'}}{{SA}} = m,\frac{{SB'}}{{SB}} = n,\frac{{SC'}}{{SC}} = p\). Đẳng thức nào dưới đây là đúng
A. \(\frac{1}{{{m^2}}} + \frac{1}{{{n^2}}} + \frac{1}{{{p^2}}} = 4\)
B. \(\frac{1}{{mn}} + \frac{1}{{np}} + \frac{1}{{pm}} = 4\)
C. \(\frac{1}{m} + \frac{1}{n} + \frac{1}{p} = 4\)
D. \(m + n + p = 4\)
Lời giải của giáo viên
ToanVN.com
.png)
Gọi G1 là trọng tâm của tam giác ABC. Khi đó \(\overrightarrow {SG} = \frac{3}{4}\overrightarrow {S{G_1}} = \frac{1}{4}(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} ).\)
Do \(G \in (A'B'C')\) nên tồn tại \(x,y,z \in R,x + y + z = 1\) sao cho \(\overrightarrow {SG} = x\overrightarrow {SA'} + y\overrightarrow {SB'} + z\overrightarrow {SC'} = \overrightarrow {xmSA} + yn\overrightarrow {SB} + zp\overrightarrow {SC} .\)
So sánh hai đẳng thức trên ta suy ra
\(\left( {xm - \frac{1}{4}} \right)\overrightarrow {SA} + \left( {yn - \frac{1}{4}} \right)\overrightarrow {SB} + \left( {zp - \frac{1}{4}} \right)\overrightarrow {SC} = \overrightarrow 0 .\)
Nhưng do \(\overrightarrow {SA} ,\overrightarrow {SB} ,\overrightarrow {SC} \) là ba vecto không đồng phẳng nên đẳng thức trên xảy ra khi và chỉ khi \(xm = yn = zp = \frac{1}{4} \Rightarrow x = \frac{1}{{4m}},y = \frac{1}{{4n}},z = \frac{1}{{4p}}.\)
Từ đây và do \(x + y + z = 1\) ta thu được \(\frac{1}{m} + \frac{1}{n} + \frac{1}{p} = 4.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \left| {{x^3} - x} \right| + m\) với m là một tham số thực. Số điểm cực trị của hàm số đã cho bằng
Cho \(f(x)\) là hàm số liên tục trên R thỏa mãn \(f(x) + f( - x) = \sqrt {1 + {\rm{cos2x}}} ,\forall x \in R\). Giá trị tích phân \(\int_{ - \frac{{3\pi }}{4}}^{\frac{{3\pi }}{4}} {f(x)dx} \) bằng
Số các giá trị nguyên dương của k thỏa mãn 2k có 100 chữ số khi viết trong hệ thập phân là
Số hạng không chứa x trong khai triển \({\left( {1 + x + {x^2} + \frac{1}{x}} \right)^9}\) bằng
Giá trị của giới hạn \(\mathop {\lim }\limits_{n \to \infty } \frac{{\overbrace {9 + 99 + ... + 99...9}^n}}{{{{10}^n}}}\) bằng
Cho tứ diện đều ABCD có cạnh bằng a. M là một điểm bất kì bên trong tứ diện. Tổng khoảng cách từ M đến các mặt của khối tứ diện là
Cho \({\log _{27}}\left| a \right| + {\log _9}{b^2} = 5\) và \({\log _{27}}\left| b \right| + {\log _9}{a^2} = 7\).Giá trị của \(\left| a \right| - \left| b \right|\) bằng
Điều kiện cần và đủ để \({x^2} + {y^2} + {z^2} + 2x + 4y - 6z + {m^2} - 9m + 4 = 0\) là phương trình của một mặt cầu
Trong không gian với hệ tọa độ Descartes Oxy cho hai điểm A(1, a) và B( - a, 2). Diện tích tam giác OAB có thể đạt giá trị nhỏ nhất bằng
Đường thẳng nối hai điểm cực trị của đồ thị hàm số \(y = \frac{{m{x^2} + (4 - 2m)x - 6}}{{2(x + 9)}}\) cách gốc tọa độ một khoảng lớn nhất khi m bằng
Giá trị của tổng \(1 + \frac{1}{i} + \frac{1}{{{i^2}}} + ... + \frac{1}{{{i^{2019}}}}\) ( ở đó i2 = -1 ) bằng
Cho z là một số phức khác 0. Miền giá trị của \(\frac{{\left| {z + \overline z } \right| + \left| {z - \overline z } \right|}}{{\left| z \right|}}\) là
Giá trị của tổng \(1 + {2^2}C_{99}^2 + {2^4}C_{99}^4 + ... + {2^{98}}C_{99}^{98}\) bằng
Cho hàm số \(f(x) = \frac{{{4^x}}}{{{4^x} + 2}}\). Giá trị của \(f\left( {\frac{1}{{100}}} \right) + f\left( {\frac{2}{{100}}} \right) + ... + f\left( {\frac{{99}}{{100}}} \right)\) bằng
Số a > 0 thỏa mãn \(\int\limits_a^2 {\frac{1}{{{x^3} + x}}} dx = \ln 2\) là


