Cho tứ diện \(ABCD\), trên các cạnh \(BC,\,\,BD,\,\,AC\) lần lượt lấy các điểm \(M,\,\,N,\,\,P\) sao cho \(BC = 3BM,\,\,BD = \dfrac{3}{2}BN,\,\,AC = 2AP\). Mặt phẳng \(\left( {MNP} \right)\) chia khối tứ diện \(ABCD\) thành 2 phần có thể tích là \({V_1},\,\,{V_2}\). Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\)
A. \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{26}}{{19}}\)
B. \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{3}{{19}}\)
C. \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{15}}{{19}}\)
D. \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{26}}{{13}}\)
Lời giải của giáo viên
ToanVN.com
Trong \(\left( {BCD} \right)\) gọi \(E = MN \cap CD\).
Trong \(\left( {ACD} \right)\) gọi \(Q = AD \cap PE\).
Khi đó thiết diện của hình chóp khi cắt bởi mặt phẳng \(\left( {MNP} \right)\) là tứ giác \(MNQP\).
Áp dụng định lí Menelaus trong tam giác BCD ta có:
\(\dfrac{{MB}}{{MC}}.\dfrac{{EC}}{{ED}}.\dfrac{{ND}}{{NB}} = 1 \Rightarrow \dfrac{1}{2}.\dfrac{{EC}}{{ED}}.\dfrac{1}{2} = 1 \Leftrightarrow \dfrac{{EC}}{{ED}} = 4\)
Áp dụng định lí Menelaus trong tam giác ACD ta có:
\(\dfrac{{PA}}{{PC}}.\dfrac{{EC}}{{ED}}.\dfrac{{QD}}{{QA}} = 1 \Rightarrow 1.4.\dfrac{{QD}}{{QA}} = 1 \Rightarrow \dfrac{{QD}}{{QA}} = \dfrac{1}{4}\) Ta có: \({V_{ABMNQ}} = {V_{ABMN}} + {V_{AMNP}} + {V_{ANPQ}}\)
\(\begin{array}{l} + )\,\,\dfrac{{{S_{BMN}}}}{{{S_{BCD}}}} = \dfrac{{BM}}{{BC}}.\dfrac{{BN}}{{BD}} = \dfrac{1}{3}.\dfrac{2}{3} = \dfrac{2}{9} \Rightarrow \dfrac{{{V_{ABMN}}}}{{{V_{ABCD}}}} = \dfrac{2}{9}\\ + )\,\,\dfrac{{{V_{AMNP}}}}{{{V_{AMNC}}}} = \dfrac{{AP}}{{AC}} = \dfrac{1}{2} \Rightarrow {V_{AMNP}} = \dfrac{1}{2}{V_{AMNC}}\\\,\,\,\,\,\,\dfrac{{{S_{NMC}}}}{{{S_{DBC}}}} = \dfrac{{d\left( {N;BC} \right).MC}}{{d\left( {D ;BC} \right).BC}} = \dfrac{{NB}}{{DB}}.\dfrac{{MC}}{{BC}} = \dfrac{2}{3}.\dfrac{2}{3} = \dfrac{4}{9}\\ \Rightarrow \dfrac{{{V_{AMNC}}}}{{{V_{ABCD}}}} = \dfrac{4}{9} \Rightarrow {V_{AMNP}} = \dfrac{2}{9}{V_{ABCD}}\\ + )\,\,\dfrac{{{V_{APQN}}}}{{{V_{ACDN}}}} = \dfrac{{AP}}{{AC}}.\dfrac{{AQ}}{{AD}} = \dfrac{1}{2}.\dfrac{4}{5} = \dfrac{2}{5} \Rightarrow {V_{APQN}} = \dfrac{2}{5}{V_{ACDN}}\\\,\,\,\,\,\,\dfrac{{{S_{CND}}}}{{{S_{CBD}}}} = \dfrac{{DN}}{{DB}} = \dfrac{1}{3} \Rightarrow \dfrac{{{V_{ACDN}}}}{{{V_{ABCD}}}} = \dfrac{1}{3} \Rightarrow {V_{APQN}} = \dfrac{2}{{15}}{V_{ABCD}}\end{array}\)
\( \Rightarrow {V_{ABMNQ}} = {V_{ABMN}} + {V_{AMNP}} + {V_{ANPQ}} = \dfrac{2}{9}{V_{ABCD}} + \dfrac{2}{9}{V_{ABCD}} + \dfrac{2}{{15}}{V_{ABCD}} = \dfrac{{26}}{{45}}{V_{ABCD}}\).
Gọi \({V_1} = {V_{ABMNQ}},\,\,{V_2}\) là thể tích phần còn lại \( \Rightarrow \dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{26}}{{19}}\).
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Một khối gỗ hình lập phương có thể tích \({V_1}\). Một người thợ mộc muốn gọt giũa khối gỗ đó thành một khối trụ có thể tích là \({V_2}\). Tính tỉ số lớn nhất \(k = \dfrac{{{V_2}}}{{{V_1}}}\)?
Cho hình chóp đều \(S.ABCD\) có đáy là hình vuông \(ABCD\) tâm \(O\) cạnh \(2a\), cạnh bên \(SA = a\sqrt 5 \). Khoảng cách giữa \(BD\) và \(SC\) là :
Cho hàm số \(y = f\left( x \right)\) có \(f'\left( x \right)\) liên tục trên \(\left[ {0;2} \right]\) và \(f\left( 2 \right) = 16\); \(\int\limits_0^2 {f\left( x \right)dx} = 4\). Tính \(I = \int\limits_0^1 {xf'\left( {2x} \right)dx} \)
Cho biết \({\left( {x - 2} \right)^{\frac{{ - 1}}{3}}} > {\left( {x - 2} \right)^{\frac{{ - 1}}{6}}},\) khẳng định nào sau đây Đúng?
Rút gọn biểu thức \(P = \frac{{{{\left( {{a^{\sqrt 3 - 1}}} \right)}^{\sqrt 3 + 1}}}}{{{a^{4 - \sqrt 5 }}.{a^{\sqrt 5 - 2}}}}\) (với \(a > 0\) và \(a \ne 1\) )
Cho lăng trụ đứng \(ABC.A'B'C'\) có diện tích tam giác \(ABC\) bằng \(2\sqrt 3 \). Gọi \(M,\,\,N,\,\,P\) lần lượt thuộc các cạnh \(AA',\,\,BB',\,\,CC'\), diện tích tam giác \(MNP\) bằng 4. Tính góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {MNP} \right)\).
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = x,\,AD = 1.\) Biết rằng góc giữa đường thẳng \(A'C\) và mặt phẳng \(\left( {ABB'A'} \right)\) bằng \({30^0}.\) Tìm giá trị lớn nhất \({V_{\max }}\) của thể tích khối hộp \(ABCD.A'B'C'D'\)
Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực \(\mathbb{R}\)?
Trong không gian \(Oxyz\), cho mặt cầu có phương trình \({x^2} + {y^2} + {z^2} - 2x + 4y - 6z + 9 = 0\). Tọa độ tâm \(I\) và bán kính \(R\) của mặt cầu là:
Tập xác định của hàm số \({\left( {{x^2} - 3x + 2} \right)^\pi }\) là:
Gọi \(m\) và \(M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = x - \sqrt {4 - {x^2}} \). Khi đó \(M - m\) bằng:
Trong không gian với hệ trục tọa độ \(Oxyz\), cho \(\overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \). Tọa độ của vectơ \(\overrightarrow a \) là:
Tìm tất cả các giá trị thực của m để hàm số \(y = \dfrac{1}{3}{x^3} - \left( {m - 1} \right){x^2} - 4mx\) đồng biến trên đoạn \(\left[ {1;4} \right]\).
Cho \(\int\limits_1^2 {f\left( x \right)dx} = 2\). Tính \(\int\limits_1^4 {\dfrac{{f\left( {\sqrt x } \right)}}{{\sqrt x }}dx} \) bằng :


